scholarly journals Interactions and functions of the adenomatous polyposis coli (APC) protein at a glance

2013 ◽  
Vol 126 (4) ◽  
pp. 873-877 ◽  
Author(s):  
S. Nelson ◽  
I. S. Nathke
2004 ◽  
Vol 15 (6) ◽  
pp. 2978-2991 ◽  
Author(s):  
Dina Dikovskaya ◽  
Ian P. Newton ◽  
Inke S. Näthke

Mutations in the adenomatous polyposis coli (APC) protein occur early in colon cancer and correlate with chromosomal instability. Here, we show that depletion of APC from cystostatic factor (CSF) Xenopus extracts leads to a decrease in microtubule density and changes in tubulin distribution in spindles and asters formed in such extracts. Addition of full-length APC protein or a large, N-terminally truncated APC fragment to APC-depleted extracts restored normal spindle morphology and the intact microtubule-binding site of APC was necessary for this rescue. These data indicate that the APC protein plays a role in the formation of spindles that is dependent on its effect on microtubules. Spindles formed in cycled extracts were not sensitive to APC depletion. In CSF extracts, spindles predominantly formed from aster-like intermediates, whereas in cycled extracts chromatin was the major site of initial microtubule polymerization. These data suggest that APC is important for centrosomally driven spindle formation, which was confirmed by our finding that APC depletion reduced the size of asters nucleated from isolated centrosomes. We propose that lack of microtubule binding in cancer-associated mutations of APC may contribute to defects in the assembly of mitotic spindles and lead to missegregation of chromosomes.


2011 ◽  
Vol 489 (2) ◽  
pp. 105-109
Author(s):  
Tulaya Potaros ◽  
Srichan Phornchirasilp ◽  
Susan B. McKay ◽  
Tatiana F. González-Cestari ◽  
R. Thomas Boyd ◽  
...  

2011 ◽  
Vol 44 (4) ◽  
pp. 207-212 ◽  
Author(s):  
Atsushi Yokoyama ◽  
Ryuji Nomura ◽  
Masafumi Kurosumi ◽  
Atsushi Shimomura ◽  
Takanori Onouchi ◽  
...  

2002 ◽  
Vol 10 (3) ◽  
pp. 175-180 ◽  
Author(s):  
Eleonora Karbova ◽  
Ben Davidson ◽  
Krassimir Metodiev ◽  
Claes G. Tropé ◽  
Jahn M. Nesland

1997 ◽  
Vol 136 (3) ◽  
pp. 693-706 ◽  
Author(s):  
Angela I.M. Barth ◽  
Anne L. Pollack ◽  
Yoram Altschuler ◽  
Keith E. Mostov ◽  
W. James Nelson

β-Catenin is essential for the function of cadherins, a family of Ca2+-dependent cell–cell adhesion molecules, by linking them to α-catenin and the actin cytoskeleton. β-Catenin also binds to adenomatous polyposis coli (APC) protein, a cytosolic protein that is the product of a tumor suppressor gene mutated in colorectal adenomas. We have expressed mutant β-catenins in MDCK epithelial cells to gain insights into the regulation of β-catenin distribution between cadherin and APC protein complexes and the functions of these complexes. Full-length β-catenin, β-catenin mutant proteins with NH2-terminal deletions before (ΔN90) or after (ΔN131, ΔN151) the α-catenin binding site, or a mutant β-catenin with a COOH-terminal deletion (ΔC) were expressed in MDCK cells under the control of the tetracycline-repressible transactivator. All β-catenin mutant proteins form complexes and colocalize with E-cadherin at cell–cell contacts; ΔN90, but neither ΔN131 nor ΔN151, bind α-catenin. However, β-catenin mutant proteins containing NH2-terminal deletions also colocalize prominently with APC protein in clusters at the tips of plasma membrane protrusions; in contrast, full-length and COOH-terminal– deleted β-catenin poorly colocalize with APC protein. NH2-terminal deletions result in increased stability of β-catenin bound to APC protein and E-cadherin, compared with full-length β-catenin. At low density, MDCK cells expressing NH2-terminal–deleted β-catenin mutants are dispersed, more fibroblastic in morphology, and less efficient in forming colonies than parental MDCK cells. These results show that the NH2 terminus, but not the COOH terminus of β-catenin, regulates the dynamics of β-catenin binding to APC protein and E-cadherin. Changes in β-catenin binding to cadherin or APC protein, and the ensuing effects on cell morphology and adhesion, are independent of β-catenin binding to α-catenin. These results demonstrate that regulation of β-catenin binding to E-cadherin and APC protein is important in controlling epithelial cell adhesion.


1996 ◽  
Vol 134 (1) ◽  
pp. 165-179 ◽  
Author(s):  
I S Näthke ◽  
C L Adams ◽  
P Polakis ◽  
J H Sellin ◽  
W J Nelson

Mutations in the adenomatous polyposis coli (APC) gene are linked to polyp formation in familial and sporadic colon cancer, but the functions of the protein are not known. We show that APC protein localizes mainly to clusters of puncta near the ends of microtubules that extend into actively migrating regions of epithelial cell membranes. This subcellular distribution of APC protein requires microtubules, but not actin filaments. APC protein-containing membranes are actively involved in cell migration in response to wounding epithelial monolayers, addition of the motorgen hepatocyte growth factor, and during the formation of cell-cell contacts. In the intestine, APC protein levels increase at the crypt/villus boundary, where cell migration is crucial for enterocyte exit from the crypt and where cells accumulate during polyp formation that is linked to mutations in the microtubule-binding domain of APC protein. Together, these data indicate that APC protein has a role in directed cell migration.


2001 ◽  
Vol 154 (6) ◽  
pp. 1105-1110 ◽  
Author(s):  
Yuko Mimori-Kiyosue ◽  
Shoichiro Tsukita

Adenomatous polyposis coli (APC) protein has been thought to function as a tumor suppressor through its involvement in the Wnt/β-catenin signaling pathway. However, its connections to the cytoskeleton and microtubules in particular are becoming apparent, and the discovery of these new functions for APC is leading to a reevaluation of its role not only in tumorigenesis, but also in normal physiology.


Sign in / Sign up

Export Citation Format

Share Document