Changes in the metaphase transit times and the pattern of sister chromatid separation in stamen hair cells of Tradescantia after treatment with protein phosphatase inhibitors

1992 ◽  
Vol 102 (4) ◽  
pp. 691-715 ◽  
Author(s):  
S.M. Wolniak ◽  
P.M. Larsen

Stamen hair cells from the spiderwort plant, Tradescantia virginiana, exhibit remarkably predictable metaphase transit times, making them uniquely suitable for temporal studies on mitotic regulation. In this study, we describe two kinds of experiments that test whether protein phosphatase activity is a necessary prerequisite for entry into anaphase in living, mitotic cells. We treated cells at specific points during prophase, prometaphase and metaphase with the broad-spectrum protein phosphatase inhibitor, alpha-naphthyl phosphate (administered by microinjection), or with the naturally occurring, potent phosphatase inhibitors okadaic acid, microcystin-LR or microcystin-RR (administered by perfusion), and we have observed changes in the metaphase transit time that are primarily dependent on the time of initial exposure to the inhibitor. Maximal extensions of the metaphase transit time result from alpha-naphthyl phosphate microinjections initiated in mid-metaphase, 10–20 min after nuclear envelope breakdown. Perfusions with okadaic acid started during a specific interval in mid-metaphase, 15–20 min after nuclear envelope breakdown, resulted in a statistically significant extension of the metaphase transit time. Perfusions with either microcystin-LR or microcystin-RR initiated 15–26 min after nuclear envelope breakdown extended the metaphase transit times significantly. Treatments of cells with okadaic acid or with either of the microcystins initiated outside this mid-metaphase interval either were without effect or, alternatively, resulted in a significant shortening of the metaphase transit time. In addition to their effects on the timing of anaphase onset, treatments with these protein phosphatase inhibitors also resulted in a remarkable change in the way in which these cells enter anaphase. Sister chromatid separation in stamen hair cells typically requires only 5 seconds, but after treatment with any of these inhibitors some, but not all, of the chromatids split apart at anaphase onset. Those that split begin to migrate toward the spindle pole regions, while those that fail to split remain at the metaphase plate. Later, more of the paired chromatids split apart and begin moving toward the spindle pole regions. Those that fail to separate remain at the metaphase plate. This process can be repeated several times before all of the chromatids have separated. Thus, entry into anaphase becomes extremely asynchronous, and as much as 30 min can transpire between the centromeric separation of the first and last chromosomes. Some of the chromosomes complete their anaphase movements before others have even split apart at the metaphase plate. Asynchronous separation did not result in a permanent segregation anomaly.(ABSTRACT TRUNCATED AT 400 WORDS)

2020 ◽  
Author(s):  
Andrew J. Bestul ◽  
Zulin Yu ◽  
Jay R. Unruh ◽  
Sue L. Jaspersen

AbstractProper mitotic progression in Schizosaccharomyces pombe requires partial nuclear envelope breakdown (NEBD) and insertion of the spindle pole body (SPB – yeast centrosome) to build the mitotic spindle. Linkage of the centromere to the SPB is vital to this process, but why that linkage is important is not well understood. Utilizing high-resolution structured illumination microscopy (SIM), we show that the conserved SUNprotein Sad1 and other SPB proteins redistribute during mitosis to form a ring complex around SPBs, which is a precursor for NEBD and spindle formation. Although the Polo kinase Plo1 is not necessary for Sad1 redistribution, it localizes to the SPB region connected to the centromere, and its activity is vital for SPB ring protein redistribution and for complete NEBD to allow for SPB insertion. Our results lead to a model in which centromere linkage to the SPB drives redistribution of Sad1 and Plo1 activation that in turn facilitate NEBD and spindle formation through building of an SPB ring structure.SummaryNuclear envelope breakdown is necessary for fission yeast cells to go through mitosis. Bestul et al. show that the SUN protein, Sad1, is vital in carrying out this breakdown and is regulated by the centromere and Polo kinase.


1998 ◽  
Vol 111 (23) ◽  
pp. 3507-3515 ◽  
Author(s):  
A. Chan ◽  
W.Z. Cande

To understand how the meiotic spindle is formed and maintained in higher plants, we studied the organization of microtubule arrays in wild-type maize meiocytes and three maize meiotic mutants, desynaptic1 (dsy1), desynaptic2 (dsy2), and absence of first division (afd). All three meiotic mutations have abnormal chromosome pairing and produce univalents by diakinesis. Using these three mutants, we investigated how the absence of paired homologous chromosomes affects the assembly and maintenance of the meiotic spindle. Before nuclear envelope breakdown, in wild-type meiocytes, there were no bipolar microtubule arrays. Instead, these structures formed after nuclear envelope breakdown and were associated with the chromosomes. The presence of univalent chromosomes in dsy1, dsy2, and afd meiocytes and of unpaired sister chromatids in the afd meiocytes did not affect the formation of bipolar spindles. However, alignment of chromosomes on the metaphase plate and subsequent anaphase chromosome segregation were perturbed. We propose a model for spindle formation in maize meiocytes in which microtubules initially appear around the chromosomes during prometaphase and then the microtubules self-organize. However, this process does not require paired kinetochores to establish spindle bipolarity.


1996 ◽  
Vol 109 (7) ◽  
pp. 1899-1907 ◽  
Author(s):  
G. Habermacher ◽  
W.S. Sale

Physiological studies have demonstrated that flagellar radial spokes regulate inner arm dynein activity in Chlamydomonas and that an axonemal cAMP-dependent kinase inhibits dynein activity in radial spoke defective axonemes. These studies also suggested that an axonemal protein phosphatase is required for activation of flagellar dynein. We tested whether inhibitors of protein phosphatases would prevent activation of dynein by the kinase inhibitor PKI in Chlamydomonas axonemes lacking radial spokes. As predicted, preincubation of spoke defective axonemes (pf14 and pf17) with ATP gamma S maintained the slow dynein-driven microtubule sliding characteristic of paralyzed axonemes lacking spokes, and blocked activation of dynein-driven microtubule sliding by subsequent addition of PKI. Preincubation of spoke defective axonemes with the phosphatase inhibitors okadaic acid, microcystin-LR or inhibitor-2 also potently blocked PKI-induced activation of microtubule sliding velocity: the non-inhibitory okadaic acid analog, 1-norokadaone, did not. ATP gamma S or the phosphatase inhibitors blocked activation of dynein in a double mutant lacking the radial spokes and the outer dynein arms (pf14pf28). We concluded that the axoneme contains a type-1 phosphatase required for activation of inner arm dynein. We postulated that the radial spokes regulate dynein through the activity of the type-1 protein phosphatase. To test this, we performed in vitro reconstitution experiments using inner arm dynein from the double mutant pf14pf28 and dynein-depleted axonemes containing wild-type radial spokes (pf28). As described previously, microtubule sliding velocity was increased from approximately 2 microns/second to approximately 7 microns/second when inner arm dynein from pf14pf28 axonemes ws reconstituted with axonemes containing wild-type spokes. In contrast, pretreatment of inner arm dynein from pf14pf28 axonemes with ATP gamma S, or reconstitution in the presence of microcystin-LR, blocked increased velocity following reconstitution, despite the presence of wild-type radial spokes. We conclude that the radial spokes, through the activity of an axonemal type-1 phosphatase, activate inner arm dynein by dephosphorylation of a critical dynein component. Wild-type radial spokes also operate to inhibit the axonemal cAMP-dependent kinase, which would otherwise inhibit axonemal dynein and motility.


1998 ◽  
Vol 274 (2) ◽  
pp. C440-C446 ◽  
Author(s):  
Isabel Bize ◽  
Patricia Muñoz ◽  
Mitzy Canessa ◽  
Philip B. Dunham

Indirect evidence has suggested that K-Cl cotransport in human and sheep erythrocytes is activated physiologically by a serine-threonine phosphatase. It is activated experimentally by H2O2and by staurosporine, a kinase inhibitor. Activation by H2O2and staurosporine is inhibited by serine-threonine phosphatase inhibitors, suggesting that the activators stimulate the phosphatase. The present study shows that sheep and human erythrocytes contain membrane-associated as well as cytosolic serine-threonine phosphatases, assayed from the dephosphorylation of32P-labeled glycogen phosphorylase. In cells from both species, the relatively low sensitivity of the membrane enzyme to okadaic acid suggests it is type 1 protein phosphatase. The cytosolic phosphatase was much more sensitive to okadaic acid. Membrane-associated phosphatase was stimulated by both H2O2and staurosporine. The results support earlier conclusions that the membrane-associated type 1 phosphatase identified here is regulated by phosphorylation and oxidation. The results are consistent with the phosphatase, or a portion of it, being responsible for activating K-Cl cotransport.


Sign in / Sign up

Export Citation Format

Share Document