Amplification of the Golgi complex in MDCK cells secreting human growth hormone

1993 ◽  
Vol 104 (2) ◽  
pp. 509-520
Author(s):  
V.L. Rudick ◽  
M.J. Rudick ◽  
A.M. Brun-Zinkernagel

MDCK cells were transfected with pXGH5, a plasmid containing the human growth hormone (hGH) gene, and permanently expressing cell lines were selected. Clone 3A cells, which secrete quantities of hGH through both apical and basolateral surfaces, were examined in detail. Immunofluorescence analysis using anti-hGH antibody revealed bright perinuclear staining coinciding with the area delineated by anti-p52 kDa protein (a resident Golgi protein) antibody. There appeared to be less Golgi-specific fluorescence in untransfected cells. This difference correlated with an increased amount of 52 kDa in the clone 3A cells. Morphometric analysis was performed on electron micrographs of clone 3A and untransfected cells using the fractionator to estimate average number of Golgi stacks per cell, and values were statistically analyzed. It was found that clone 3A cells contained 3.3 and untransfected cells 1.6 stacks (P < or = 0.005), respectively. When clone 3A cells were placed into defined medium, the synthesis and secretion of hGH declined 4-fold, and the number of Golgi stacks also decreased to the untransfected level within seven days. The number of Golgi stacks per untransfected cell was not affected by the presence of exogenous hGH, indicating that Golgi amplification was directly related to secretory demand. Generation times and cell volumes were identical for both cell types under all growth conditions. In addition, the kinetics of protein secretion from radiolabelled cells demonstrated that clone 3A cells generally secrete lower amounts of endogenously synthesized apical proteins than do untransfected cells, while basolateral secretion remains the same. In both cases hGH comprised only about 10% of total secretory proteins, so that the increase in total protein secretion did not seem to warrant the two-fold elaboration of Golgi by 3A cells. But there might be significant amounts of hGH which traverse the Golgi to end up in lysosomes, rather than being secreted, leading to Golgi amplification.

1999 ◽  
Vol 112 (8) ◽  
pp. 1247-1256 ◽  
Author(s):  
D. Prabakaran ◽  
R.S. Ahima ◽  
J.W. Harney ◽  
M.J. Berry ◽  
P.R. Larsen ◽  
...  

Polarized trafficking signals may be interpreted differently in different cell types. In this study, we have compared the polarized trafficking of different proteins expressed endogenously in primary porcine thyroid epithelial cells to similar proteins expressed in MDCK cells. As in MDCK cells, NH4Cl treatment of filter-grown thyrocytes caused mis-sorted soluble proteins to exhibit enhanced secretion to the apical medium. In independent studies, thrombospondin 1 (a thyroid basolaterally secreted protein) was secreted basolaterally from MDCK cells. Likewise, the 5′-deiodinase (a thyroid basolateral membrane protein) encoded by the DIO1 gene was also distributed basolaterally in transfected MDCK cells. Consistent with previous reports, when the secretion of human growth hormone (an unglycosylated regulated secretory protein) was examined from transfected MDCK cells, the release was nonpolarized. However, transfected thyrocytes secreted growth hormone apically in a manner dependent upon zinc addition. Moreover, two additional regulated secretory proteins expressed in thyrocytes, thyroglobulin (the major endogenous glycoprotein) and parathyroid hormone (an unglycosylated protein expressed transiently), were secreted apically even in the absence of zinc. We hypothesize that while cellular mechanisms for interpreting polarity signals are generally similar between thyrocytes and MDCK cells, thyrocytes allow for specialized packaging of regulated secretory proteins for apical delivery, which does not require glycosylation but may involve availability of certain ions as well as appropriate intracellular compartmentation.


1993 ◽  
Vol 60 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Nicoletta Di Simone ◽  
Roberta Castellani ◽  
Antonio Lanzone ◽  
Alessandro Caruso ◽  
Salvatore Mancuso

1965 ◽  
Vol 49 (3_Suppl) ◽  
pp. S143
Author(s):  
Zvi Laron ◽  
Avivah Kowadlo-Silbergeld

Diabetes ◽  
1980 ◽  
Vol 29 (10) ◽  
pp. 782-787 ◽  
Author(s):  
F. M. Ng ◽  
J. Bornstein ◽  
C. E. Pullin ◽  
J. O. Bromley ◽  
S. L. Macaulay

Sign in / Sign up

Export Citation Format

Share Document