luteal cells
Recently Published Documents


TOTAL DOCUMENTS

944
(FIVE YEARS 39)

H-INDEX

43
(FIVE YEARS 2)

Author(s):  
Wenlong Zhang ◽  
Dewen Tong ◽  
Zelin Zhang ◽  
Jiang Peng ◽  
Sitian Yang ◽  
...  

Effects of melatonin on the release and synthesis of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) at the hypothalamus and pituitary levels have been explored in some species, but a similar study in the corpora lutea (CL) has not yet been conducted. In this study, the immunostaining for GnRH and LH was observed in luteal cells of porcine CL during pregnancy, and a significant effect of pregnant stage on the level of GnRH and LH was found; higher values for GnRH and LH immunostaining and mRNA were detected in the early- and mid- stages CL than in the later-stage CL (P < 0.01). Furthermore, the patterns of melatonin membrane receptors (MT1 and MT2) expression were consistent with those of GnRH and LH expression in the CL of pregnant sows; the relative levels of MT1 and MT2 in the early- and mid- stages were significantly higher than those in the later-stage (P < 0.01). In luteal cells, melatonin dose-dependently increased in GnRH and LH secretion and mRNA expression. Melatonin also increased the GnRH–induced accumulation of LH, and the LH–induced secretion of P4 in luteal cells. Additionally, the effects of melatonin on luteal GnRH and LH production, were blocked by luzindole, a nonselective MT1 and MT2 receptor antagonist. Our results demonstrate the stimulatory effects of melatonin on GnRH and LH production in luteal cells of pregnant sows, suggesting a potential role for melatonin in luteal function through regulating the release and synthesis of GnRH and LH in luteal cells.


Author(s):  
Emilia Przygrodzka ◽  
Corrine F. Monaco ◽  
Michele R. Plewes ◽  
Guojuan Li ◽  
Jennifer R. Wood ◽  
...  

In the absence of pregnancy the ovarian corpus luteum undergoes regression, a process characterized by decreased production of progesterone and structural luteolysis involving apoptosis. Autophagy has been observed in the corpus luteum during luteal regression. Autophagy is a self-degradative process important for balancing sources of cellular energy at critical times in development and in response to nutrient stress, but it can also lead to apoptosis. Mechanistic target of rapamycin (MTOR) and 5′ AMP-activated protein kinase (AMPK), key players in autophagy, are known to inhibit or activate autophagy, respectively. Here, we analyzed the signaling pathways regulating the initiation of autophagy in bovine luteal cells. In vivo studies showed increased activating phosphorylation of AMPKα (Thr172) and elevated content of LC3B, a known marker of autophagy, in luteal tissue during PGF2α-induced luteolysis. In vitro, AMPK activators 1) stimulated phosphorylation of regulatory associated protein of MTOR (RPTOR) leading to decreased activity of MTOR, 2) increased phosphorylation of Unc-51-Like Kinase 1 (ULK1) and Beclin 1 (BECN1), at sites specific for AMPK and required for autophagy initiation, 3) increased levels of LC3B, and 4) enhanced colocalization of autophagosomes with lysosomes indicating elevated autophagy. In contrast, LH/PKA signaling in luteal cells 1) reduced activation of AMPKα and phosphorylation of RPTOR, 2) elevated MTOR activity, 3) stimulated phosphorylation of ULK1 at site required for ULK1 inactivation, and 4) inhibited autophagosome formation as reflected by reduced content of LC3B-II. Pretreatment with AICAR, a pharmacological activator of AMPK, inhibited LH-mediated effects on RPTOR, ULK1 and BECN1. Our results indicate that luteotrophic signaling via LH/PKA/MTOR inhibits, while luteolytic signaling via PGF2α/Ca2+/AMPK activates key signaling pathways involved in luteal cell autophagy.


Author(s):  
Renata Santos Silva ◽  
Ana Paula Mattoso Miskulin Cardoso ◽  
Ines Cristina Giometti ◽  
Loren D'Aprile ◽  
Francislaine Anelize Garcia Santos ◽  
...  
Keyword(s):  

Author(s):  
Christian Lee Andersen ◽  
Haeyeun Byun ◽  
Yuehuan Li ◽  
Shuo Xiao ◽  
Doris M Miller ◽  
...  

Abstract Certain chemotherapeutic drugs are toxic to ovarian follicles. The corpus luteum (CL) is normally developed from an ovulated follicle for producing progesterone (P4) to support early pregnancy. To fill in the knowledge gap about effects of chemotherapy on the CL, we tested the hypothesis that chemotherapy may target endothelial cells and/or luteal cells in the CL to impair CL function in P4 steroidogenesis using doxorubicin (DOX) as a representative chemotherapeutic drug in mice. In both mixed background mice and C57BL/6 mice, a single intraperitoneal injection of DOX (10 mg/kg) on 0.5 days post coitum (D0.5, post-ovulation) led to ~58% D3.5 mice with serum P4 levels lower than the serum P4 range in the PBS-treated control mice. Further studies in the C57BL/6 ovaries revealed that CLs from DOX-treated mice with low P4 levels had less defined luteal cords and disrupted collagen IV expression pattern, indicating disrupted capillary, accompanied with less differentiated luteal cells that had smaller cytoplasm and reduced StAR expression. DOX-treated ovaries had increased granulosa cell death in the growing follicles, reduced PCNA-positive endothelial cells in the CLs, enlarged lipid droplets and disrupted F-actin in the luteal cells. These novel data suggest that the proliferating endothelial cells in the developing CL may be the primary target of DOX to impair the vascular support for luteal cell differentiation and subsequently P4 steroidogenesis. This study fills in the knowledge gap about the toxic effects of chemotherapy on the CL and provides critical information for risk assessment of chemotherapy in premenopausal patients.


2021 ◽  
Vol 22 (18) ◽  
pp. 9972
Author(s):  
Emilia Przygrodzka ◽  
Michele R. Plewes ◽  
John S. Davis

The corpus luteum is an endocrine gland that synthesizes the steroid hormone progesterone. luteinizing hormone (LH) is a key luteotropic hormone that stimulates ovulation, luteal development, progesterone biosynthesis, and maintenance of the corpus luteum. Luteotropic and luteolytic factors precisely regulate luteal structure and function; yet, despite recent scientific progress within the past few years, the exact mechanisms remain largely unknown. In the present review, we summarize the recent progress towards understanding cellular changes induced by LH in steroidogenic luteal cells. Herein, we will focus on the effects of LH on inter-organelle communication and steroid biosynthesis, and how LH regulates key protein kinases (i.e., AMPK and MTOR) responsible for controlling steroidogenesis and autophagy in luteal cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zonghao Tang ◽  
Jiajie Chen ◽  
Zhenghong Zhang ◽  
Jingjing Bi ◽  
Renfeng Xu ◽  
...  

The increase of oxidative stress is one of the important characteristics of mammalian luteal regression. Previous investigations have revealed the essential role of reactive oxygen species (ROS) in luteal cell death during luteolysis, while it is unknown how ROS is regulated in this process. Considering the decrease of blood flow and increase of PGF2α during luteolysis, we hypothesized that the HIF-1α pathway may be involved in the regulation of ROS in the luteal cell of the late corpus luteum (CL). Here, by using a pseudopregnant rat model, we showed that the level of both HIF-1α and its downstream BNIP3 was increased during luteal regression. Consistently, we observed the increase of autophagy level during luteolysis, which is regulated in a Beclin1-independent manner. Comparing with early (Day 7 of pseudopregnancy) and middle CL (Day 14), the level of ROS was significantly increased in late CL, indicating the contribution of oxidative stress in luteolysis. Inhibition of HIF-1α by echinomycin (Ech), a potent HIF-1α inhibitor, ameliorated the upregulation of BNIP3 and NIX, as well as the induction of autophagy and the accumulation of ROS in luteal cells on Day 21 of pseudopregnancy. Morphologically, Ech treatment delayed the atrophy of the luteal structure at the late-luteal stage. An in vitro study indicated that inhibition of HIF-1α can also attenuate PGF2α-induced ROS and luteal cell apoptosis. Furthermore, the decrease of cell apoptosis can also be observed by ROS inhibition under PGF2α treatment. Taken together, our results indicated that HIF-1α signaling is involved in the regression of CL by modulating ROS production via orchestrating autophagy. Inhibition of HIF-1α could obviously hamper the apoptosis of luteal cells and the process of luteal regression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi-Fan Jiang ◽  
Pin-Huan Yu ◽  
Yovita Permata Budi ◽  
Chih-Hsien Chiu ◽  
Chi-Yu Fu

AbstractIn mammalian ovaries, mitochondria are integral sites of energy production and steroidogenesis. While shifts in cellular activities and steroidogenesis are well characterized during the differentiation of large luteal cells in folliculogenesis and luteal formation, mitochondrial dynamics during this process have not been previously evaluated. In this study, we collected ovaries containing primordial follicles, mature follicles, corpus hemorrhagicum, or corpus luteum from goats at specific times in the estrous cycle. Enzyme histochemistry, ultrastructural observations, and 3D structural analysis of serial sections of mitochondria revealed that branched mitochondrial networks were predominant in follicles, while spherical and tubular mitochondria were typical in large luteal cells. Furthermore, the average mitochondrial diameter and volume increased from folliculogenesis to luteal formation. In primordial follicles, the signals of cytochrome c oxidase and ATP synthase were undetectable in most cells, and the large luteal cells from the corpus hemorrhagicum also showed low enzyme signals and content when compared with granulosa cells in mature follicles or large luteal cells from the corpus luteum. Our findings suggest that the mitochondrial enlargement could be an event during folliculogenesis and luteal formation, while the modulation of mitochondrial morphology and respiratory enzyme expressions may be related to tissue remodeling during luteal formation.


Reproduction ◽  
2021 ◽  
Author(s):  
Patrycja Kurowska ◽  
Monika Sroka ◽  
Monika Dawid ◽  
Ewa Mlyczyńska ◽  
Natalia Respekta ◽  
...  

Resistin plays an important role in adipogenesis, obesity, insulin resistance and reproduction. Previous studies showed resistin action on ovarian follicular cells; however, whether resistin regulates steroid secretion in luteal cells is still unknown. Our aim was first to determine the expression of resistin and its potential receptors (tyrosine kinase-like orphan receptor 1 [ROR1] and Toll-like receptor 4 [TLR4]) in the porcine corpus luteum (CL), regulation of its expression, effect on kinases phosphorylation and luteal steroidogenesis. Our results showed that the expression of resistin and its receptors was dependent on the luteal phase and this was at the mRNA level higher in the late compared with the early and middle luteal phase. At the opposite, resistin protein expression was higher in the middle and late compared with the early luteal phase, while ROR1 and TLR4 expression was highest in the early luteal phase. Additionally, we observed cytoplasmic localisation of resistin, ROR1 and TLR4 in small and large luteal cells. We found that luteinising hormone, progesterone (P4), insulin and insulin-like growth factor 1 regulated the protein level of resistin, ROR1 and TLR4. Resistin decreased P4 and increased oestradiol (E2) secretion via changing in steroidogenic enzymes expression and via the activation of protein kinase A (PKA) and mitogen-activated protein kinase (MAP3/1), increased the expression of receptors LHCGR and ESR2 and decreased the expression of PGR. Moreover, resistin decreased PKA phosphorylation and enhanced MAP3/1 phosphorylation. Taken together, resistin could act directly on steroid synthesis and serve as an important factor in in vivo luteal cell function.


Sign in / Sign up

Export Citation Format

Share Document