Effect of monensin on plant Golgi: re-examination of the monensin-induced changes in cisternal architecture and functional activities of the Golgi apparatus of sycamore suspension-cultured cells

1993 ◽  
Vol 104 (3) ◽  
pp. 819-831 ◽  
Author(s):  
G.F. Zhang ◽  
A. Driouich ◽  
L.A. Staehelin

We have re-examined the effects of the ionophore monensin on the Golgi apparatus of sycamore maple suspension-cultured cells using a combination of high pressure freezing, immunocytochemical and biochemical techniques. Exposure of the cells to 10 microM monensin, which reduces protein secretion by approximately 90%, resulted first in the swelling of the trans-Golgi network, then of the trans-most trans-cisterna, the remaining trans-cisternae, and finally of the cis and medial cisternae. We postulate that these different rates of swelling reflect an underlying hierarchy of compartmental acidification with the trans-Golgi network being the most acidic compartment. Recovery occurred in the reverse sequence. Previous studies have suggested that the large swollen vesicles that accumulate in the cytoplasm of monensin-treated cells arise from the swelling and detachment of entire trans-cisternae. However, based on the many membrane blebbing configurations seen in association with the trans-Golgi network and the trans-Golgi cisternae of monensin-treated cells, and the fact that the surface area of the trans-Golgi cisternae is about five times greater than the surface area of the swollen vesicles, it appears that the swollen vesicles are produced by a budding mechanism. After 35–40 min of monensin treatment, cells with smaller, non-swollen, compact Golgi stacks began to appear and rapidly increased in number, contributing > 60% of the cell population after 60 min and > 80% after 100 min. In contrast, large numbers of swollen vesicles persisted in the cytoplasm of all cells for over 100 min. Since azide treatment of monensin-treated cells can prematurely induce the unswelling response and cellular ATP levels drop substantially after 45 min of monensin treatment, we propose that un-swelling of the Golgi stacks is due to a monensin-induced decline in ATP levels in the cells. Immunocytochemical labeling of the high pressure frozen cells with anti-xyloglucan antibodies demonstrated that the concentration of xyloglucan, a hemicellulose, in the swollen vesicles increased with time. This increase in vesicle contents may explain why these swollen vesicles do not contract in parallel with the Golgi stacks. In vivo labeling experiments with [3H]fucose, [3H]UDP-glucose and [3H]leucine demonstrated that monensin-treatment not only inhibited protein secretion, but also cellulose synthesis. Protein synthesis, on the other hand, was reduced only slightly during the first 30 min of treatment, but quite strongly between 30 and 60 min, consistent with the observed drop in ATP levels after > 40 min of exposure to monensin.(ABSTRACT TRUNCATED AT 400 WORDS)

1999 ◽  
Vol 112 (11) ◽  
pp. 1721-1732 ◽  
Author(s):  
M.J. Francis ◽  
E.E. Jones ◽  
E.R. Levy ◽  
R.L. Martin ◽  
S. Ponnambalam ◽  
...  

The protein encoded by the Menkes disease gene (MNK) is localised to the Golgi apparatus and cycles between the trans-Golgi network and the plasma membrane in cultured cells on addition and removal of copper to the growth medium. This suggests that MNK protein contains active signals that are involved in the retention of the protein to the trans-Golgi network and retrieval of the protein from the plasma membrane. Previous studies have identified a signal involved in Golgi retention within transmembrane domain 3 of MNK. To identify a motif sufficient for retrieval of MNK from the plasma membrane, we analysed the cytoplasmic domain, downstream of transmembrane domain 7 and 8. Chimeric constructs containing this cytoplasmic domain fused to the reporter molecule CD8 localised the retrieval signal(s) to 62 amino acids at the C terminus. Further studies were performed on putative internalisation motifs, using site-directed mutagenesis, protein expression, chemical treatment and immunofluorescence. We observed that a di-leucine motif (L1487L1488) was essential for rapid internalisation of chimeric CD8 proteins and the full-length Menkes cDNA from the plasma membrane. We suggest that this motif mediates the retrieval of MNK from the plasma membrane into the endocytic pathway, via the recycling endosomes, but is not sufficient on its own to return the protein to the Golgi apparatus. These studies provide a basis with which to identify other motifs important in the sorting and delivery of MNK from the plasma membrane to the Golgi apparatus.


2009 ◽  
Vol 60 (5) ◽  
pp. 865-881 ◽  
Author(s):  
Sheung Kwan Lam ◽  
Yi Cai ◽  
Yu Chung Tse ◽  
Juan Wang ◽  
Angus Ho Yin Law ◽  
...  

1988 ◽  
Vol 106 (3) ◽  
pp. 617-628 ◽  
Author(s):  
J R Duncan ◽  
S Kornfeld

We have used Chinese hamster ovary (CHO) cells and a murine lymphoma cell line to study the recycling of the 215-kD and the 46-kD mannose 6-phosphate receptors to various regions of the Golgi to determine the site where the receptors first encounter newly synthesized lysosomal enzymes. For assessing return to the trans-most Golgi compartments containing sialyltransferase (trans-cisternae and trans-Golgi network), the oligosaccharides of receptor molecules on the cell surface were labeled with [3H]galactose at 4 degrees C. Upon warming to 37 degrees C, the [3H]galactose residues on both receptors were substituted with sialic acid with a t1/2 approximately 3 hrs. Other glycoproteins acquired sialic acid at least 8-10 times slower. Return of the receptors to the trans-Golgi cisternae containing galactosyltransferase could not be detected. Return to the cis/middle Golgi cisternae containing alpha-mannosidase I was measured by adding deoxymannojirimycin, a mannosidase I inhibitor, during the initial posttranslational passage of [3H]mannose-labeled glycoproteins through the Golgi, thereby preserving oligosaccharides which would be substrates for alpha-mannosidase I. After removal of the inhibitor, return to the early Golgi with subsequent passage through the Golgi complex was measured by determining the conversion of the oligosaccharides from high mannose to complex-type units. This conversion was very slow for the receptors and other glycoproteins (t1/2 approximately 20 h). Exposure of the receptors and other glycoproteins to the dMM-sensitive alpha-mannosidase without movement through the Golgi apparatus was determined by measuring the loss of mannose residues from these proteins. This loss was also slow. These results indicate that both Man-6-P receptors routinely return to the Golgi compartment which contains sialyltransferase and recycle through other regions of the Golgi region less frequently. We infer that the trans-Golgi network is the major site for lysosomal enzyme sorting in CHO and murine lymphoma cells.


2001 ◽  
Vol 114 (2) ◽  
pp. 353-365 ◽  
Author(s):  
X. Zhao ◽  
T. Greener ◽  
H. Al-Hasani ◽  
S.W. Cushman ◽  
E. Eisenberg ◽  
...  

Although uncoating of clathrin-coated vesicles is a key event in clathrin-mediated endocytosis it is unclear what prevents uncoating of clathrin-coated pits before they pinch off to become clathrin-coated vesicles. We have shown that the J-domain proteins auxilin and GAK are required for uncoating by Hsc70 in vitro. In the present study, we expressed auxilin in cultured cells to determine if this would block endocytosis by causing premature uncoating of clathrin-coated pits. We found that expression of auxilin indeed inhibited endocytosis. However, expression of auxilin with its J-domain mutated so that it no longer interacted with Hsc70 also inhibited endocytosis as did expression of the clathrin-assembly protein, AP180, or its clathrin-binding domain. Accompanying this inhibition, we observed a marked decrease in clathrin associated with the plasma membrane and the trans-Golgi network, which provided us with an opportunity to determine whether the absence of clathrin from clathrin-coated pits affected the distribution of the clathrin assembly proteins AP1 and AP2. Surprisingly we found almost no change in the association of AP2 and AP1 with the plasma membrane and the trans-Golgi network, respectively. This was particularly obvious when auxilin or GAK was expressed with functional J-domains since, in these cases, almost all of the clathrin was sequestered in granules that also contained Hsc70 and auxilin or GAK. We conclude that expression of clathrin-binding proteins inhibits clathrin-mediated endocytosis by sequestering clathrin so that it is no longer available to bind to nascent pits but that assembly proteins bind to these pits independently of clathrin.


Sign in / Sign up

Export Citation Format

Share Document