Unorthodox male meiosis in Trichosia pubescens (Sciaridae). Chromosome elimination involves polar organelle degeneration and monocentric spindles in first and second division

1994 ◽  
Vol 107 (1) ◽  
pp. 299-312 ◽  
Author(s):  
H. Fuge

Male meiosis in Trichosia pubescens (Sciaridae) was investigated by means of serial section electron microscopy and immunofluorescence light microscopy. From earlier studies of another sciarid fly, Sciara coprophila (Phillips (1967) J. Cell. Biol. 33, 73–92), it is known that the spindle poles in sciarid spermatogonia are characterized by pairs of ‘giant centrioles’, ring-shaped organelles composed of large numbers of singlet microtubules. In the present study spermatocytes in early prophase of Trichosia were found to possess single giant centrioles at opposite sides of the nucleus. The obvious reduction in centriole number from the spermatogonial to the spermatocyte stage is suggested to be the result of a suppression of daughter centriole formation. In late prophase, a large aster is developed around the centriole at one pole. At the opposite pole no comparable aster is formed. Instead, a number of irregular centriolar components appear in this region, a process that is understood to be a degeneration of the polar organelle. The components of the degenerate pole migrate into a cytoplasmic protrusion (‘bud’), which later is also utilized for the elimination of paternal chromosomes. The existence of only one functional polar centre is the reason for the formation of a monopolar monocentric spindle in first meiotic division, which in turn is one of the prerequisites for the elimination of paternal chromosomes. While the set of maternal and L chromosomes orientates and probably moves towards the pole, paternal chromosomes seem to be unable to contact the pole, possibly due to an inactivation of their kinetochores. Retrograde (‘away from the pole’) chromosome motion not involving kinetochores is assumed. Eventually, paternal chromosomes move into the pole-distal bud and are eliminated by casting off, together with the components of the degenerate polar organelle. Chromosome elimination can be delayed until the second meiotic division. The spindle of the second meiotic division is bipolar and monocentric. One spindle pole is marked by the polar centre of first division. The opposite spindle apex is devoid of a polar centre. It is assumed that spindle bipolarity in the second division is induced by the amphi-orientated chromosomes themselves. The maternal and L chromosome set (except the non-disjunctional X chromosome, which is found near the polar centre) congress in a metaphase plate, divide and segregate. Of the two daughter nuclei resulting from the second meiotic division, the one containing the X chromatids is retained as the nucleus of the future spermatozoon. The other nucleus becomes again eliminated within a second cytoplasmic bud.

1977 ◽  
Vol 72 (3) ◽  
pp. 552-567 ◽  
Author(s):  
W Z Cande ◽  
E Lazarides ◽  
J R McIntosh

Rabbit antibodies against actin and tubulin were used in an indirect immunofluorescence study of the structure of the mitotic spindle of PtK1 cells after lysis under conditions that preserve anaphase chromosome movement. During early prophase there is no antiactin staining associated with the mitotic centers, but by late prophase, as the spindle is beginning to form, a small ball of actin antigenicity is found beside the nucleus; After nuclear envelope breakdown, the actiactin stains the region around each mitotic center, and becomes organized into fibers that run between the chromosomes and the poles. Colchicine blocks this organization, but does not disrupt the staining at the poles. At metaphase the antiactin reveals a halo of ill-defined radius around each spindle pole and fibers that run from the poles to the metaphase plate. Antitubulin shows astral rays, fibers running from chromosomes to poles, and some fibers that run across the metaphase plate. At anaphase, there is a shortening of the antiactin-stained fibers, leaving a zone which is essentially free of actin-staining fluorescence between the separating chromosomes. Antitubulin stains the region between chromosomes and poles, but also reveals substantial fibers running through the zone between separating chromosomes. Cells fixed during cytokinesis show actin in the region of the cleavage furrow, while antitubulin reveals the fibrous spindle remnant that runs between daughter cells. These results suggest that actin is a component of the mammalian mitotic spindle, that the distribution of actin differs from that of tubulin and that the distributions of these two fibrous proteins change in different ways during anaphase.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 3775-3784 ◽  
Author(s):  
B. de Saint Phalle ◽  
W. Sullivan

Sex in Sciara coprophila is determined by maternally supplied factors that control the number of paternal X chromosomes eliminated during the syncytial embryonic divisions. Confocal microscopy and FISH demonstrate that the centromeres of the X chromosomes separate at anaphase and remain functional during the cycle in which the X chromosomes are eliminated. However, a region of the sister chromatids fails to separate and the X chromosomes remain at the metaphase plate. This indicates that failure of sister chromatid separation is the mechanism of chromosome elimination. Elimination of the X chromosomes requires the presence of a previously discovered Controlling Element that acts in cis during male meiosis. Using an X-autosome translocation, we demonstrate that the Controlling Element acts at-a-distance to prevent sister chromatid separation in the arm of an autosome. This indicates that the region in which sister chromatid separation fails is chromosome-independent. Although chromosome elimination occurs in all somatic nuclei and is independent of location of the nuclei within the embryo, the decision to eliminate is made at the level of the individual nucleus. Programmed X chromosome elimination occurs at different cycles in male and female embryos. These observations support a model in which elements on the X chromosome are titrating maternally supplied factors controlling the separation of sister X chromatids.


2021 ◽  
Author(s):  
Brigitte de Saint Phalle ◽  
Rudolf Oldenbourg ◽  
Donna F. Kubai ◽  
Edward D. Salmon ◽  
Susan A. Gerbi

Meiosis in male Sciara is unique with a single centrosome. A monopolar spindle forms in meiosis I, but a bipolar spindle forms in meiosis II. The imprinted paternal chromosomes are eliminated in meiosis I; there is non-disjunction of the X in meiosis II. Despite differences in spindle construction and chromosome behavior, both meiotic divisions are asymmetric, producing a cell and a small bud. Observations of live spermatocytes made with the LC-PolScope, differential interference contrast optics and fluorescence revealed maternal and paternal chromosome sets on the monopolar spindle in meiosis I and formation of an asymmetric monastral bipolar spindle in meiosis II where all chromosomes except the X congress to the metaphase plate. The X remains near the centrosome after meiosis I and stays with it as the spindle forms in meiosis II. Electron microscopy revealed amorphous material between the X and the centrosome. Immunofluorescence with an antibody against the checkpoint protein Mad2 stains the centromeres of the maternal X dyad in late meiosis I and in meiosis II where it fails to congress to the metaphase plate. Mad2 is also present throughout the paternal chromosomes destined for elimination in meiosis I, suggesting a possible role in chromosome imprinting. If Mad2 on the X dyad mediates a spindle checkpoint in meiosis II, it may delay metaphase to facilitate formation of the second half spindle through a non-centrosomal mechanism.


2019 ◽  
Author(s):  
Christopher A. Hylton ◽  
Katie Hansen ◽  
Andrew Bourgeois ◽  
John E. Tomkiel

ABSTRACTTo maintain proper ploidy, haploid sex cells must undergo two subsequent meiotic divisions. During meiosis I, homologs pair and remain conjoined until segregation at anaphase. Drosophila melanogaster spermatocytes are unique in that the canonical events of meiosis I including synaptonemal complex (SC) formation, double-strand DNA breaks, and chiasmata are absent. Sex chromosomes pair at intergenic spacer sequences within the heterochromatic rDNA while euchromatin is required to pair and segregate autosomal homologies, suggesting that pairing may be limited to specific sequences. However, previous work generated from genetic segregation assays or observations of late prophase I/prometaphase I chromosome associations fail to differentiate pairing from conjunction. Here, we separately examined the capability of X euchromatin to pair and conjoin using an rDNA-deficient X and a series of Dp(1;Y) chromosomes. Genetic assays showed that duplicated X euchromatin can substitute for endogenous rDNA pairing sites. Segregation was not proportional to homology length, and pairing could be mapped to nonoverlapping sequences within a single Dp(1;Y). Using fluorescent in situ hybridization (FISH) to early prophase I spermatocytes, we showed that pairing occurred with high fidelity at all homologies tested. Pairing was unaffected by the presence of X rDNA, nor could it be explained by rDNA magnification. By comparing genetic and cytological data, we determined that centromere proximal pairings were best at segregation. Segregation was dependent on the conjunction protein Stromalin in Meiosis while the autosomal-specific Teflon was dispensable. Overall, our results suggest that pairing may occur at all homologies, but there may be sequence or positional requirements for conjunction.ARTICLE SUMMARYDrosophila males have evolved a unique system of chromosome segregation in meiosis that lacks recombination. Chromosomes pair at selected sequences suggesting that early steps of meiosis may also differ in this organism. Using Y chromosomes carrying portions of X material, we show that pairing between sex chromosomes can be mediated by sequences other than the previously identified rDNA pairing sites. We propose that pairing may simply be homology-based and may not differ from canonical meiosis observed in females. The main difference in males may be that conjunctive mechanisms that join homologs in the absence of crossovers.


Genetics ◽  
2020 ◽  
Vol 214 (3) ◽  
pp. 605-616 ◽  
Author(s):  
Christopher A. Hylton ◽  
Katie Hansen ◽  
Andrew Bourgeois ◽  
John E. Tomkiel Dean

Diploid germline cells must undergo two consecutive meiotic divisions before differentiating as haploid sex cells. During meiosis I, homologs pair and remain conjoined until segregation at anaphase. Drosophila melanogaster spermatocytes are unique in that the canonical events of meiosis I including synaptonemal complex formation, double-strand DNA breaks, and chiasmata are absent. Sex chromosomes pair at intergenic spacer sequences within the ribosomal DNA (rDNA). Autosomes pair at numerous euchromatic homologies, but not at heterochromatin, suggesting that pairing may be limited to specific sequences. However, previous work generated from genetic segregation assays or observations of late prophase I/prometaphase I chromosome associations fail to differentiate pairing from maintenance of pairing (conjunction). Here, we separately examined the capability of X euchromatin to pair and conjoin using an rDNA-deficient X and a series of Dp(1;Y) chromosomes. Genetic assays showed that duplicated X euchromatin can substitute for endogenous rDNA pairing sites. Segregation was not proportional to homology length, and pairing could be mapped to nonoverlapping sequences within a single Dp(1;Y). Using fluorescence in situ hybridization to early prophase I spermatocytes, we showed that pairing occurred with high fidelity at all homologies tested. Pairing was unaffected by the presence of X rDNA, nor could it be explained by rDNA magnification. By comparing genetic and cytological data, we determined that centromere proximal pairings were best at segregation. Segregation was dependent on the conjunction protein Stromalin in Meiosis, while the autosomal-specific Teflon was dispensable. Overall, our results suggest that pairing may occur at all homologies, but there may be sequence or positional requirements for conjunction.


1998 ◽  
Vol 142 (6) ◽  
pp. 1533-1545 ◽  
Author(s):  
Paul S. Shapiro ◽  
Eugeni Vaisberg ◽  
Alan J. Hunt ◽  
Nicholas S. Tolwinski ◽  
Anne M. Whalen ◽  
...  

The mitogen-activated protein (MAP) kinase pathway, which includes extracellular signal–regulated protein kinases 1 and 2 (ERK1, ERK2) and MAP kinase kinases 1 and 2 (MKK1, MKK2), is well-known to be required for cell cycle progression from G1 to S phase, but its role in somatic cell mitosis has not been clearly established. We have examined the regulation of ERK and MKK in mammalian cells during mitosis using antibodies selective for active phosphorylated forms of these enzymes. In NIH 3T3 cells, both ERK and MKK are activated within the nucleus during early prophase; they localize to spindle poles between prophase and anaphase, and to the midbody during cytokinesis. During metaphase, active ERK is localized in the chromosome periphery, in contrast to active MKK, which shows clear chromosome exclusion. Prophase activation and spindle pole localization of active ERK and MKK are also observed in PtK1 cells. Discrete localization of active ERK at kinetochores is apparent by early prophase and during prometaphase with decreased staining on chromosomes aligned at the metaphase plate. The kinetochores of chromosomes displaced from the metaphase plate, or in microtubule-disrupted cells, still react strongly with the active ERK antibody. This pattern resembles that reported for the 3F3/2 monoclonal antibody, which recognizes a phosphoepitope that disappears with kinetochore attachment to the spindles, and has been implicated in the mitotic checkpoint for anaphase onset (Gorbsky and Ricketts, 1993. J. Cell Biol. 122:1311–1321). The 3F3/2 reactivity of kinetochores on isolated chromosomes decreases after dephosphorylation with protein phosphatase, and then increases after subsequent phosphorylation by purified active ERK or active MKK. These results suggest that the MAP kinase pathway has multiple functions during mitosis, helping to promote mitotic entry as well as targeting proteins that mediate mitotic progression in response to kinetochore attachment.


1992 ◽  
Vol 70 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Kerry O'Donnell

Meiosis in the smut fungi Ustilago maydis and Ustilago avenae (Basidiomycota, Ustilaginales) was studied by electron microscopy of serial-sectioned freeze substituted basidia. At prophase I, a spindle pole body composed of two globular elements connected by a middle piece was attached to the extranuclear surface of each nucleus. Astral and spindle microtubules were initiated at each globular element at late prophase I to prometaphase I. During spindle initiation, the middle piece disappeared and interdigitating half-spindles entered the nucleoplasm, which was surrounded by discontinuous nuclear envelope together with perinuclear endoplasmic reticulum. Kinetochore pairs at metaphase I were analyzed to obtain a karyotype for each species. The meiotic spindle pole body replicational cycle is described. Key words: electron microscopy, freeze-substitution, meiosis, Ustilago, spindle pole body.


1993 ◽  
Vol 106 (3) ◽  
pp. 967-981 ◽  
Author(s):  
E.C. Paul ◽  
A. Quaroni

The mAb RK7, previously shown to recognize keratin 19, was also found to cross-react with a biologically unrelated 102 kDa protein, which becomes associated with the poles of the mitotic apparatus. This newly identified protein, called cytocentrin, is a stable cellular component, may be at least in part phosphorylated, and displays a cell cycle-dependent cellular localization. In interphase cells, it is diffusely distributed in the cytosol and shows no affinity for cytoplasmic microtubules. It becomes localized to the centrosome in early prophase, prior to nuclear envelope breakdown, separation of replicated centrosomes, and nucleation of mitotic apparatus microtubules. During metaphase, cytocentrin is located predominately at the mitotic poles, often appearing as an aggregate of small globular sub-components; it also associates with some polar microtubules. In late anaphase/early telophase cytocentrin dissociates entirely from the mitotic apparatus and becomes temporarily localized with microtubules in the midbody, from which it disappears by late telophase. In taxol-treated cells cytocentrin was associated with the center of the miniasters but also showed affinity for some cytoplasmic microtubules. Studies employing G2-synchronized cells and nocodazole demonstrated that cytocentrin can become associated with mitotic centrosomes independently of tubulin polymerization and that microtubules regrow from antigen-containing foci. We interpret these results to suggest that cytocentrin is a cytoplasmic protein that becomes specifically activated or modified at the onset of mitosis so that it can affiliate with the mitotic poles where it may provide a link between the pericentriolar material and other components of the mitotic apparatus.


Genetics ◽  
1980 ◽  
Vol 94 (3) ◽  
pp. 663-673 ◽  
Author(s):  
Lyria Mori ◽  
A L P Perondini

ABSTRACT It was previously assumed that the X-linked recessive mutation, sepia, induced errors in X-chromosome elimination during early embryogenesis of Sciam ocellaris. The results obtained in the present analysis corroborate this assumption and permit a further classification of the type of error this mutation induces. Among 85,244individuals analyzed, three kinds of aberrant flies were identified: mosaics (0.01 %), gynandromorphs (0.42%)and phenotypically exceptional individuals (0.25%).The origin ofthese abnormal flies could be ascribed to errors in selective elimination of X chromosomes that occur in male meiosis or during the early cleavages of the zygote nuclei. This last kind of error could be classified into three types: (a) error in number, (b) error in type, and (c) error in number and type of X chromosome eliminated. Evidence is provided indicating that sepia has no direct effect on the X chromosome; it has a maternal influence and exerts its effect only in the heterozygous condition.


Sign in / Sign up

Export Citation Format

Share Document