Identification of a 102 kDa protein (cytocentrin) immunologically related to keratin 19, which is a cytoplasmically derived component of the mitotic spindle pole

1993 ◽  
Vol 106 (3) ◽  
pp. 967-981 ◽  
Author(s):  
E.C. Paul ◽  
A. Quaroni

The mAb RK7, previously shown to recognize keratin 19, was also found to cross-react with a biologically unrelated 102 kDa protein, which becomes associated with the poles of the mitotic apparatus. This newly identified protein, called cytocentrin, is a stable cellular component, may be at least in part phosphorylated, and displays a cell cycle-dependent cellular localization. In interphase cells, it is diffusely distributed in the cytosol and shows no affinity for cytoplasmic microtubules. It becomes localized to the centrosome in early prophase, prior to nuclear envelope breakdown, separation of replicated centrosomes, and nucleation of mitotic apparatus microtubules. During metaphase, cytocentrin is located predominately at the mitotic poles, often appearing as an aggregate of small globular sub-components; it also associates with some polar microtubules. In late anaphase/early telophase cytocentrin dissociates entirely from the mitotic apparatus and becomes temporarily localized with microtubules in the midbody, from which it disappears by late telophase. In taxol-treated cells cytocentrin was associated with the center of the miniasters but also showed affinity for some cytoplasmic microtubules. Studies employing G2-synchronized cells and nocodazole demonstrated that cytocentrin can become associated with mitotic centrosomes independently of tubulin polymerization and that microtubules regrow from antigen-containing foci. We interpret these results to suggest that cytocentrin is a cytoplasmic protein that becomes specifically activated or modified at the onset of mitosis so that it can affiliate with the mitotic poles where it may provide a link between the pericentriolar material and other components of the mitotic apparatus.

1990 ◽  
Vol 110 (5) ◽  
pp. 1513-1523 ◽  
Author(s):  
I McMorrow ◽  
W E Souter ◽  
G Plopper ◽  
B Burke

By means of a monoclonal antibody (BH3), we have identified a 57-kD protein (p57) that in interphase is restricted largely to the perinuclear region of the cell. Double label immunofluorescence microscopy suggests localization of p57 to the Golgi complex and associated membranous structures. Protease protection experiments and chemical extractability indicate that p57 is a peripheral membrane protein exposed to the cytoplasm. p57 displays unique behavior during mitosis. At the end of G2 or in early prophase, p57 leaves the perinuclear region and accumulates very rapidly within the nucleus, at a time when the nuclear envelope is still intact and before nuclear lamina disassembly. This relocation of p57 coincides with its hyperphosphorylation on serine and threonine residues. After nuclear envelope breakdown p57 becomes uniformly distributed throughout the mitotic cytoplasm until in late telophase when it returns to its perinuclear location and is once again excluded from the nucleus. The behavior of p57 during mitosis suggests that it may play a role in the cellular reorganization evident during mitotic prophase.


2009 ◽  
Vol 20 (20) ◽  
pp. 4348-4361 ◽  
Author(s):  
Rosemarie Blau-Wasser ◽  
Ursula Euteneuer ◽  
Huajiang Xiong ◽  
Berthold Gassen ◽  
Michael Schleicher ◽  
...  

The Dictyostelium centrosome is a nucleus associated body consisting of a box-shaped core surrounded by the corona, an amorphous matrix functionally equivalent to the pericentriolar material of animal centrosomes which is responsible for the nucleation and anchoring of microtubules. Here we describe CP250 a component of the corona, an acidic coiled coil protein that is present at the centrosome throughout interphase while disappearing during prophase and reappearing at the end of late telophase. Amino acids 756-1148 of the 2110 amino acids are sufficient for centrosomal targeting and cell cycle–dependent centrosome association. Mutant cells lacking CP250 are smaller in size, growth on bacteria is delayed, chemotaxis is altered, and development is affected, which, in general, are defects observed in cytoskeletal mutants. Furthermore, loss of CP250 affected the nuclear envelope and led to reduced amounts and altered distribution of Sun-1, a conserved nuclear envelope protein that connects the centrosome to chromatin.


1986 ◽  
Vol 81 (1) ◽  
pp. 243-265
Author(s):  
J.H. Doonan ◽  
C.W. Lloyd ◽  
J.G. Duckett

The discovery that the monoclonal anti-tubulin antibody YOL 1/34 recognizes a microtubule organizing centre, the blepharoplast (which arises de novo during the latter stages of spermatogenesis in the fern, Platyzoma microphyllum), has enabled us to follow it and associated microtubules throughout most of its ontogeny. By correlating electron-microscopic and immunofluorescence observations, YOL 1/34 is seen to stain the blepharoplast uniformly at a time when no microtubules are present within the organelle. Later, staining becomes intense at the surface, concomitant with the re-location of cylindrical channels to the periphery of the blepharoplast. During anaphase of the ultimate division of the spermatid mother cell the blepharoplast moves to the spindle poles and sharpens the otherwise barrel-shaped mitotic apparatus. Prior to this stage the blepharoplast is, however, off-centre and at variable positions around the poles. Later still, in the differentiating spermatids, the blepharoplast is the focus for radiating cytoplasmic microtubules that abut directly onto the electron-dense organelle, penetrating the ribosome-free halo. The three main conclusions are: that tubulin in a pre-microtubular form is associated with the cylindrical channels that arise de novo within the previously amorphous blepharoplast and act as a template in basal body formation; that the late appearance of the blepharoplast as a focus for the spindle poles during the final mitosis provides strong argument against its functioning during spindle pole initiation (despite its ability to sharpen the poles at anaphase); that the blepharoplast does seem to act as a microtubule organizing centre in the mitotically quiescent spermatid.


1977 ◽  
Vol 72 (3) ◽  
pp. 552-567 ◽  
Author(s):  
W Z Cande ◽  
E Lazarides ◽  
J R McIntosh

Rabbit antibodies against actin and tubulin were used in an indirect immunofluorescence study of the structure of the mitotic spindle of PtK1 cells after lysis under conditions that preserve anaphase chromosome movement. During early prophase there is no antiactin staining associated with the mitotic centers, but by late prophase, as the spindle is beginning to form, a small ball of actin antigenicity is found beside the nucleus; After nuclear envelope breakdown, the actiactin stains the region around each mitotic center, and becomes organized into fibers that run between the chromosomes and the poles. Colchicine blocks this organization, but does not disrupt the staining at the poles. At metaphase the antiactin reveals a halo of ill-defined radius around each spindle pole and fibers that run from the poles to the metaphase plate. Antitubulin shows astral rays, fibers running from chromosomes to poles, and some fibers that run across the metaphase plate. At anaphase, there is a shortening of the antiactin-stained fibers, leaving a zone which is essentially free of actin-staining fluorescence between the separating chromosomes. Antitubulin stains the region between chromosomes and poles, but also reveals substantial fibers running through the zone between separating chromosomes. Cells fixed during cytokinesis show actin in the region of the cleavage furrow, while antitubulin reveals the fibrous spindle remnant that runs between daughter cells. These results suggest that actin is a component of the mammalian mitotic spindle, that the distribution of actin differs from that of tubulin and that the distributions of these two fibrous proteins change in different ways during anaphase.


1994 ◽  
Vol 107 (1) ◽  
pp. 299-312 ◽  
Author(s):  
H. Fuge

Male meiosis in Trichosia pubescens (Sciaridae) was investigated by means of serial section electron microscopy and immunofluorescence light microscopy. From earlier studies of another sciarid fly, Sciara coprophila (Phillips (1967) J. Cell. Biol. 33, 73–92), it is known that the spindle poles in sciarid spermatogonia are characterized by pairs of ‘giant centrioles’, ring-shaped organelles composed of large numbers of singlet microtubules. In the present study spermatocytes in early prophase of Trichosia were found to possess single giant centrioles at opposite sides of the nucleus. The obvious reduction in centriole number from the spermatogonial to the spermatocyte stage is suggested to be the result of a suppression of daughter centriole formation. In late prophase, a large aster is developed around the centriole at one pole. At the opposite pole no comparable aster is formed. Instead, a number of irregular centriolar components appear in this region, a process that is understood to be a degeneration of the polar organelle. The components of the degenerate pole migrate into a cytoplasmic protrusion (‘bud’), which later is also utilized for the elimination of paternal chromosomes. The existence of only one functional polar centre is the reason for the formation of a monopolar monocentric spindle in first meiotic division, which in turn is one of the prerequisites for the elimination of paternal chromosomes. While the set of maternal and L chromosomes orientates and probably moves towards the pole, paternal chromosomes seem to be unable to contact the pole, possibly due to an inactivation of their kinetochores. Retrograde (‘away from the pole’) chromosome motion not involving kinetochores is assumed. Eventually, paternal chromosomes move into the pole-distal bud and are eliminated by casting off, together with the components of the degenerate polar organelle. Chromosome elimination can be delayed until the second meiotic division. The spindle of the second meiotic division is bipolar and monocentric. One spindle pole is marked by the polar centre of first division. The opposite spindle apex is devoid of a polar centre. It is assumed that spindle bipolarity in the second division is induced by the amphi-orientated chromosomes themselves. The maternal and L chromosome set (except the non-disjunctional X chromosome, which is found near the polar centre) congress in a metaphase plate, divide and segregate. Of the two daughter nuclei resulting from the second meiotic division, the one containing the X chromatids is retained as the nucleus of the future spermatozoon. The other nucleus becomes again eliminated within a second cytoplasmic bud.


1998 ◽  
Vol 111 (5) ◽  
pp. 557-572 ◽  
Author(s):  
C. Roghi ◽  
R. Giet ◽  
R. Uzbekov ◽  
N. Morin ◽  
I. Chartrain ◽  
...  

By differential screening of a Xenopus laevis egg cDNA library, we have isolated a 2,111 bp cDNA which corresponds to a maternal mRNA specifically deadenylated after fertilisation. This cDNA, called Eg2, encodes a 407 amino acid protein kinase. The pEg2 sequence shows significant identity with members of a new protein kinase sub-family which includes Aurora from Drosophila and Ipl1 (increase in ploidy-1) from budding yeast, enzymes involved in centrosome migration and chromosome segregation, respectively. A single 46 kDa polypeptide, which corresponds to the deduced molecular mass of pEg2, is immunodetected in Xenopus oocyte and egg extracts, as well as in lysates of Xenopus XL2 cultured cells. In XL2 cells, pEg2 is immunodetected only in S, G2 and M phases of the cell cycle, where it always localises to the centrosomal region of the cell. In addition, pEg2 ‘invades’ the microtubules at the poles of the mitotic spindle in metaphase and anaphase. Immunoelectron microscopy experiments show that pEg2 is located precisely around the pericentriolar material in prophase and on the spindle microtubules in anaphase. We also demonstrate that pEg2 binds directly to taxol stabilised microtubules in vitro. In addition, we show that the presence of microtubules during mitosis is not necessary for an association between pEg2 and the centrosome. Finally we show that a catalytically inactive pEg2 kinase stops the assembly of bipolar mitotic spindles in Xenopus egg extracts.


1975 ◽  
Vol 18 (2) ◽  
pp. 327-346
Author(s):  
F.O. Perkins

The fine structure of the haplosporidan mitotic apparatus is described from observations of plasmodial nuclei of Minchinia nelsoni, M. costalis, Minchinia sp., and Urosporidium crescens. The apparatus, which is the Kernstab of light-microscope studies, consists of a bundle of microtubules terminating in a spindle pole body (SPB) at each end of the bundle. A few microtubules extend from SPB to SPB, but most either extend from an SPB and terminate in the nucleoplasm or lie in the nucleoplasm, free of either SPB. The bundle lengthens during mitosis, increasing the SPB-to-SPB distance by a factor of 2 to 3 as compared to interphase nuclei. SPBs are not in contact with the nuclear envelope, being found always in the nucleoplasm which is delimited by the nuclear envelope throughout mitosis. The mitotic apparatus is persistent through interphase, at least in a form which is not significantly different from that found in mitotic nuclei.


2014 ◽  
Vol 25 (15) ◽  
pp. 2250-2259 ◽  
Author(s):  
Nicole Rachfall ◽  
Alyssa E. Johnson ◽  
Sapna Mehta ◽  
Jun-Song Chen ◽  
Kathleen L. Gould

In Schizosaccharomyces pombe, late mitotic events are coordinated with cytokinesis by the septation initiation network (SIN), an essential spindle pole body (SPB)–associated kinase cascade, which controls the formation, maintenance, and constriction of the cytokinetic ring. It is not fully understood how SIN initiation is temporally regulated, but it depends on the activation of the GTPase Spg1, which is inhibited during interphase by the essential bipartite GTPase-activating protein Byr4-Cdc16. Cells are particularly sensitive to the modulation of Byr4, which undergoes cell cycle–dependent phosphorylation presumed to regulate its function. Polo-like kinase, which promotes SIN activation, is partially responsible for Byr4 phosphorylation. Here we show that Byr4 is also controlled by cyclin-dependent kinase (Cdk1)–mediated phosphorylation. A Cdk1 nonphosphorylatable Byr4 phosphomutant displays severe cell division defects, including the formation of elongated, multinucleate cells, failure to maintain the cytokinetic ring, and compromised SPB association of the SIN kinase Cdc7. Our analyses show that Cdk1-mediated phosphoregulation of Byr4 facilitates complete removal of Byr4 from metaphase SPBs in concert with Plo1, revealing an unexpected role for Cdk1 in promoting cytokinesis through activation of the SIN pathway.


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Franz Meitinger ◽  
Dong Kong ◽  
Midori Ohta ◽  
Arshad Desai ◽  
Karen Oegema ◽  
...  

Centrosomes are composed of a centriolar core surrounded by pericentriolar material that nucleates microtubules. The ubiquitin ligase TRIM37 localizes to centrosomes, but its centrosomal roles are not yet defined. We show that TRIM37 does not control centriole duplication, structure, or the ability of centrioles to form cilia but instead prevents assembly of an ectopic centrobin-scaffolded structured condensate that forms by budding off of centrosomes. In ∼25% of TRIM37-deficient cells, the condensate organizes an ectopic spindle pole, recruiting other centrosomal proteins and acquiring microtubule nucleation capacity during mitotic entry. Ectopic spindle pole–associated transient multipolarity and multipolar segregation in TRIM37-deficient cells are suppressed by removing centrobin, which interacts with and is ubiquitinated by TRIM37. Thus, TRIM37 ensures accurate chromosome segregation by preventing the formation of centrobin-scaffolded condensates that organize ectopic spindle poles. Mutations in TRIM37 cause the disorder mulibrey nanism, and patient-derived cells harbor centrobin condensate-organized ectopic poles, leading us to propose that chromosome missegregation is a pathological mechanism in this disorder.


2020 ◽  
Author(s):  
Andrew J. Bestul ◽  
Zulin Yu ◽  
Jay R. Unruh ◽  
Sue L. Jaspersen

AbstractProper mitotic progression in Schizosaccharomyces pombe requires partial nuclear envelope breakdown (NEBD) and insertion of the spindle pole body (SPB – yeast centrosome) to build the mitotic spindle. Linkage of the centromere to the SPB is vital to this process, but why that linkage is important is not well understood. Utilizing high-resolution structured illumination microscopy (SIM), we show that the conserved SUNprotein Sad1 and other SPB proteins redistribute during mitosis to form a ring complex around SPBs, which is a precursor for NEBD and spindle formation. Although the Polo kinase Plo1 is not necessary for Sad1 redistribution, it localizes to the SPB region connected to the centromere, and its activity is vital for SPB ring protein redistribution and for complete NEBD to allow for SPB insertion. Our results lead to a model in which centromere linkage to the SPB drives redistribution of Sad1 and Plo1 activation that in turn facilitate NEBD and spindle formation through building of an SPB ring structure.SummaryNuclear envelope breakdown is necessary for fission yeast cells to go through mitosis. Bestul et al. show that the SUN protein, Sad1, is vital in carrying out this breakdown and is regulated by the centromere and Polo kinase.


Sign in / Sign up

Export Citation Format

Share Document