Coordinated movements between autosomal half-bivalents in crane-fly spermatocytes: evidence that ‘stop’ signals are sent between partner half-bivalents

1996 ◽  
Vol 109 (1) ◽  
pp. 155-163
Author(s):  
B. Yin ◽  
A. Forer

During anaphase-I in crane-fly spermatocytes, sister half-bivalents separate and move to opposite poles. When we irradiate a kinetochore spindle fibre with an ultraviolet microbeam, the associated half-bivalent temporarily stops moving and so does the partner half-bivalent with which it was paired during metaphase. To test whether a ‘signal’ is transmitted between partner half-bivalents we irradiated the spindle twice, once in the interzone (the region between separating partner half-bivalents) and once in a kinetochore fibre. For both irradiations we used light of wavelength 290 microns and a dose that, after irradiating a spindle fibre only, altered movement in 63% of irradiations (12/19); in 11 of the 12 cells both partner half-bivalents stopped moving after the irradiation. In control experiments we irradiated the interzone only: these irradiations generally did not stop chromosomal poleward motion but sometimes (14/29) caused poleward movement to each pole to be abruptly reduced to about half the velocity prior to irradiation. In double irradiation experiments we varied the order of the irradiations. In some double irradiation experiments we irradiated the interzonal region first and the spindle fibre second; in 75% (9/12) of the cells the half-bivalent associated with the irradiated fibre stopped moving while the partner half-bivalent moved normally, i.e. in 9/12 cells the interzonal irradiations uncoupled the movements of the partner half-bivalents. In other double irradiation experiments we irradiated the spindle fibre first and the interzone second: in 80% (4/5) of the cells the half-bivalents not associated with the irradiated spindle fibre resumed movement immediately after the irradiation while the other half-bivalent remained stopped. Interzonal irradiations therefore uncouple the poleward movements of sister half-bivalents and the uncoupling does not depend on the order of the irradiation. Our experiments suggest therefore that the irradiation of a spindle fibre causes negative (‘stop’) signals to be transmitted across the interzone and that irradiation of the interzone blocks the transmission of the stop signal.

1987 ◽  
Vol 88 (4) ◽  
pp. 441-452
Author(s):  
JULIA A. M. SWEDAK ◽  
ARTHUR FORER

Sex chromosomes in crane-fly spermatocytes move polewards at anaphase after the autosomes have reached the poles. In Nephrotoma abbreviate the sex chromosomes are 8 μm long by 3.5 μm wide and have two orientations when they move: the long axis of the sex chromosome is either perpendicular or parallel to the spindle axis. We assume (1) that when a sex chromosome is perpendicular to the spindle axis it has a chromosomal spindle fibre to each pole, one from each kinetochore, as in other species; and (2) that when a sex chromosome is parallel to the spindle axis each kinetochore has spindle fibres to both poles, i.e. that the latter sex chromosomes are maloriented. We irradiated one kinetochore of one sex chromosome using an ultraviolet microbeam. When both sex chromosomes were normally oriented, irradiation of a single kinetochore permanently blocked movement of both sex chromosomes. Irradiation of non-kinetochore chromosomal regions or of spindle fibres did not block movement, or blocked movement only temporarily. We argue that ultraviolet irradiation of one kinetochore blocks movement of both sex chromosomes because of effects on a ‘signal’ system. The results were different when one sex chromosome was maloriented. Irradiation of one kinetochore of a maloriented sex chromosome did not block motion of either sex chromosome. On the other hand, irradiation of one kinetochore of a normally oriented sex chromosome permanently blocked motion of both that sex chromosome and the maloriented sex chromosome. We argue that for the signal system to allow the sex chromosomes to move to the pole each sex chromosome must have one spindle fibre to each pole.


1981 ◽  
Vol 59 (9) ◽  
pp. 770-776 ◽  
Author(s):  
Peggy J. Sillers ◽  
Arthur Forer

Single chromosomal spindle fibres in anaphase Nephrotoma ferruginea (crane fly) spermatocytes were irradiated with monochromatic ultraviolet light focussed to a 4-μm spot by means of an ultraviolet microbeam apparatus. The movement of the half-bivalent associated with the irradiated spindle fibre was either unaffected or the half-bivalent stopped moving; i.e., the effect was all-or-none. When the half-bivalent associated with the irradiated spindle fibre did stop moving, the partner half-bivalent moving towards the opposite pole (i.e., the half-bivalent with which the first half-bivalent was previously paired) also stopped moving: all other half-bivalents moved normally. In over 90% of the 69 cases the movements of the two half-bivalents were only temporarily blocked; when movement resumed both half-bivalents resumed movement at the same time, after stoppage times ranging from 2 min to more than 15 min. In a few cases the half-bivalents never resumed poleward motion.When half-bivalents that had stopped movement finally resumed movement they often did not reach the poles; i.e., they "lagged" and remained separate from the other chromosomes. This result occurred only in spermatocytes of N. ferruginea. In spermatocytes of N. suturalis or N. abbreviata, on the other hand, the stopped half-bivalents did not lag but always reached the poles.Half-bivalent pairs that stopped moving in N. ferruginea spermatocytes did so for shorter times than did those previously reported (after irradiation of chromosomal spindle fibres) in N. suturalis spermatocytes. We suggest that the difference is due to our use of monochromatic ultraviolet light as opposed to the previous use of heterochromatic ultraviolet light. We assume that different wavelengths of monochromatic light produce different effects, that any given monochromatic irradiation produces only one effect (albeit different effects at different wavelengths), but that heterochromatic irradiations can produce multiple effects.Irradiation of the interzone (between separating half-bivalents) had no effect on the chromosome-to-pole movements of the half-bivalents. Therefore the stoppage of movement of half-bivalent pairs is specific for irradiation of chromosomal spindle fibres. On the other hand, irradiation of the interzone often blocked pole-to-pole elongation.


1983 ◽  
Vol 62 (1) ◽  
pp. 1-25
Author(s):  
P.J. Sillers ◽  
A. Forer

Single chromosomal spindle fibres in Nephrotoma suturalis (crane-fly) spermatocytes in metaphase and anaphase were irradiated with monochromatic ultraviolet light focussed to a 2 micrometer spot. In cells in both metaphase and anaphase either the birefringence of the irradiated spindle fibre was altered in the irradiated region, or there was no change, depending on the dose and wavelength of ultraviolet light used for the irradiation. When there was an area of reduced birefringence (ARB), it moved poleward regardless of whether the associated chromosome moved poleward. When cells were irradiated in early metaphase they remained in metaphase until the ARB reached the pole. In some cells irradiated in late metaphase the chromosomes began anaphase before the ARB reached the pole; in many such cells anaphase was abnormal in that all six half-bivalents separated at the start of anaphase but none moved polewards. In all cases the ARB moved poleward at the same speed as subsequent chromosome movement; that is, at about 0.8 micrometer/min. In cells irradiated in anaphase, spindle fibre birefringence was reduced independently of blockage of chromosome movement. Because birefringence and movement were altered independently there were four classes of results: (1) in some cases there was no effect on the movement of the chromosome associated with the irradiated spindle fibre and no effect on the birefringence of the irradiated spindle fibre. (2)In some cases, primarily with 260 nm wavelength light, there was no effect on the movement of the chromosome associated with the irradiated spindle fibre and there was an effect on the birefringence of the irradiated spindle fibre. (3) In some cases, primarily with 290 nm wavelength light, there was an effect on the movement of the chromosome associated with the irradiated spindle fibre and no effect on the birefringence of the irradiated spindle fibre. (4) In some cases, primarily with 270 nm and 280 nm wavelength light, there was an effect on the movement of the chromosomes associated with the irradiated spindle fibre and there was an effect on the birefringence of the irradiated spindle fibre. The action spectrum for reducing spindle fibre birefringence in crane-fly spermatocytes had two peaks, one at 260 nm and the other, less sensitive, at 280 nm. For irradiations at 270 nm, 280 nm and 290 nm, five to fifty times more energy was needed to reduce spindle fibre birefringence than to stop chromosome movement, but for irradiations at 260 nm five times less energy was needed to reduce spindle fibre birefringence than to stop chromosome movement. The action spectrum for reducing spindle fibre birefringence is quite different from that for stopping chromosome movement.


1983 ◽  
Vol 64 (1) ◽  
pp. 69-88 ◽  
Author(s):  
P.J. Sillers ◽  
D. Wise ◽  
A. Forer

Individual spindle fibres in prometaphase spermatocytes of the cricket, Neocurtilla hexadactyla, were irradiated with an ultraviolet microbeam. The stretched heteromorphic bivalent (X2Y) contracted to about 75% of its pre-irradiation length after irradiation of either of its two oppositely directed spindle fibres (i.e., the X2 or Y spindle fibre). The X2Y bivalent also contracted after irradiation of the connection between the kinetochores of the univalent X1 chromosome and the Y chromosome but it did not contract after irradiation of autosomal spindle fibres or of the spindle fibre of the X1 univalent sex chromosome. The spindles sometimes shrank after irradiation, but contraction of the X2Y bivalent was independent of spindle shrinkage. The data strongly suggest that the oppositely directed forces on a bivalent are not independent. One reason is that the X2Y contractions were asymmetrical: during contraction one kinetochore remained fixed in position while the other kinetochore (facing the opposite pole) moved towards the equator. In 75% of the cases the stationary kinetochore was associated with the irradiated spindle fibre. Thus, we suggest that the irradiation of a spindle fibre produces a state analogous to rigor in the irradiated spindle fibre and, because of effects on the control system, produces relaxation of tension in the oppositely directed non-irradiated spindle fibre, so that the kinetochore associated with the non-irradiated spindle fibre moves towards the equator. These experiments have identified a control system that coordinates force production to opposite poles.


1941 ◽  
Vol 19c (9) ◽  
pp. 351-369 ◽  
Author(s):  
R. Merton Love

Meiosis was studied in varieties of Triticum vulgare (2n = 42), T. dicoccum (2n = 28), T. durum (2n = 28), T. Timopheevi (2n = 28), and in 16 of their pentaploid hybrids as part of a study in an attempt to establish criteria indicating relationships between 42- and 28-chromosome wheats, with particular reference to the possible relationship of the new 42-chromosome wheat, McMurachy's Selection, to T. dicoccum or T. durum.One plant each of T. vulgare var. Hope and Marquillo had only 41 chromosomes. One plant of T. durum var. Pentad had three times as many unpaired chromosomes as the other plants of this variety.A nucleus with 14 pairs and 7 univalents was not detected among the 86 pollen mother cells analysed in the cross involving T. Timopheevi. In the remaining crosses the frequency of this association of chromosomes was lowest in the three hybrids involving T. durum var. Pentad, greater in the three involving T. dicoccum var. Khapli, still greater in the three involving T. dicoccum var. Vernal, and greatest in the nine hybrids involving T. durum var. Iumillo.Of the seven "extra chromosomes" of T. vulgare only six remained unpaired in some pollen mother cells of the hybrids involving Vernal or Iumillo and five in those involving Khapli or Pentad. One pollen mother cell of F1 Marquis × Pentad contained only four unpaired chromosomes.Associations of four chromosomes were rare in some, and not seen at all in others, of the hybrids involving Vernal or Iumillo, more frequent in hybrids involving Khapli, and very frequent in hybrids involving Pentad. In the latter, from 47 to 57% of the nuclei had from one to three such multiple associations, and even chains of five and six chromosomes were observed.Fragmentation of unpaired chromosomes at or in the spindle fibre attachment region was observed in a number of first anaphase figures.There were statistically significant differences in the frequencies of occurrence of micronuclei in tetrads of the 15 hybrids studied at the second reduction division.The crosses R.L. 1544 (genetically related to T. durum var. Iumillo) × Iumillo and Hope (genetically related to T. dicoccum var. Vernal) × Vernal were used as standards for comparison. On the basis of the results, the following criteria were used in attempting to establish relationships between the other 42- and 28-chromosome wheats: (1) the percentage of pollen mother cells with 14 pairs and 7 univalents (greatest in the hybrids between related varieties); (2) the average number of chromosomes involved in multiple associations (lowest in hybrids between related varieties); (3) fertility (greatest in hybrids between related varieties). McMurachy's Selection appeared to be most closely related to T. durum var. Iumillo. On the basis of Criteria (1) and (2), Marquis appears to be more closely related to T. dicoccum var. Vernal than to T. durum var. Iumillo, but in respect of fertility it seems closer to the latter.Chromosome behaviour in the 16 hybrids cannot be neatly summarized. Even varieties within a species gave different results—results that are not in agreement with earlier published reports on chromosome behaviour in pentaploid wheat hybrids in which it has been stated that 14 bivalents and 7 univalents are most commonly found. The difficulties encountered in attempting to establish criteria indicating relationships between the 42- and 28-chromosome wheats suggest that the utmost caution must be used in drawing phylogenetic conclusions on the basis of such data.


1985 ◽  
Vol 63 (6) ◽  
pp. 585-598 ◽  
Author(s):  
Arthur Forer

Chromosomes move towards spindle poles because of force produced by chromosomal spindle fibres. I argue that actin is involved in producing this force. Actin is present in chromosomal spindle fibres, with consistent polarity. Physiological experiments using ultraviolet microbeam irradiations suggest that the force is due to an actin and myosin (or myosin-equivalent) system. Other physiological experiments (using inhibitors in "leaky" cells or antibodies injected into cells) that on the face of it would seem to rule out actin and myosin on closer scrutiny do not really do so at all. I argue that in vivo the "on" ends of chromosomal spindle fibre microtubules are at the kinetochores; I discuss the apparent contradiction between this conclusion and those from experiments on microtubules in vitro. From what we know of treadmilling in microtubules in vitro, the poleward movements of irradiation-induced areas of reduced birefringence (arb) can not be explained as treadmilling of microtubules: additional assumptions need to be made for arb movements toward the pole to be due to treadmilling. If arb movement does indeed represent treadmilling along chromosomal spindle fibre microtubules, treadmilling continues throughout anaphase. Thus I suggest that chromosomal spindle fibres shorten in anaphase not because polymerization is stopped at the kinetochore (the on end), as previously assumed, but rather because there is increased depolymerization at the pole (the "off" end).


1981 ◽  
Vol 49 (1) ◽  
pp. 51-67 ◽  
Author(s):  
P.J. Sillers ◽  
A. Forer

In meiosis-I crane-fly spermatocytes 3 autosomal half-bivalents move to each pole in anaphase while the 2 sex-chromosomal univalents remain at the equator. The sex chromosomes move to opposite poles only after the autosomes reach the poles; the sex chromosomes start to move polewards about 25 min after the autosomal half-bivalents have begun to move. We irradiated portions of single autosomal spindle fibres with an ultraviolet microbeam and found that these irradiation altered the subsequent sex-chromosome movements. Two effects were observed. In one, one of the sex chromosomes did not move at all; the sex cin after the autosomal half-bivalents have begun to move. We irradiated portions of single autosomal spindle fibres with an ultraviolet microbeam and found that these irradiation altered the subsequent sex-chromosome movements. Two effects were observed. In one, one of the sex chromosomes did not move at all; the sex cin after the autosomal half-bivalents have begun to move. We irradiated portions of single autosomal spindle fibres with an ultraviolet microbeam and found that these irradiation altered the subsequent sex-chromosome movements. Two effects were observed. In one, one of the sex chromosomes did not move at all; the sex chromosome that remained at the equator would normally have moved to the pole associated with the irradiated autosomal spindle fibre. In the second, both sex chromosomes moved to the same pole, always that of the non-irradiated side. These effects occurred whether or not autosomal anaphase movement was blocked by the irradiation. There was no wavelength dependence for altering sex-chromosome movements. Sex-chromosome movements were altered only when at least one sex-chromosomal spindle fibre was adjacent to the irradiated autosomal spindle fibre; when neither sex chromosome had a spindle fibre adjacent to the irradiated autosomal spindle fibres the chromosomes always moved normally. Irradiation of sex-chromosomal spindle fibres during sex-chromosomal anaphase showed short blockages of movement (usually 5–8 min), and then complete recovery. Direct irradiation of sex-chromosomal spindle fibres (without irradiating autosomal spindle fibres) when the autosomes were in anaphase but the sex chromosomes were in metaphase never caused abnormal sex-chromosome movements. These results eliminate the possibility that when we irradiated autosomal spindle fibres that were adjacent to sex-chromosomal spindle fibres the sex-chromosomal spindle fibres were irradiated inadvertently and were unable to recover from the damage. We suggest that the irradiations of autosomal spindle fibres alter a control system involved in “turning on' sex-chromosomal spindle fibre motors, rather than directly altering the motors. We suggest that interactions between spindle fibres are somehow involved in this control system.


1988 ◽  
Vol 91 (4) ◽  
pp. 455-468 ◽  
Author(s):  
P.J. Wilson ◽  
A. Forer

Irradiation of birefringent chromosomal spindle fibres in crane-fly spermatocytes in metaphase I or anaphase I produces an area of reduced birefringence (ARB) on the fibre. This ARB moves poleward and is lost at the pole. Ultrastructural and immunofluorescence analysis of ARBs obtained by irradiation with monochromatic ultraviolet light of wavelength 260 nm shows that the microtubules in the irradiated area are depolymerized, though the rest of the spindle appears unaffected. The area of microtubule depolymerization moves poleward with the ARB, and once the ARB reaches the pole the irradiated half-spindle appears normal. The motion of the ARB, therefore, appears to be due to the behaviour of the sheared microtubules in the chromosomal spindle fibre. The relative stability of the sheared microtubules shows that chromosomal fibre microtubules are not dynamically unstable, as are microtubules under certain conditions in vitro. However, ARB motion may be due to a moderated version of dynamic instability. Possible models for ARB motion are discussed.


1984 ◽  
Vol 69 (1) ◽  
pp. 1-17
Author(s):  
D. Wise ◽  
P.J. Sillers ◽  
A. Forer

Single spindle fibres of Neocurtilla spermatocytes were irradiated by means of an ultraviolet microbeam. Irradiations were with monochromatic ultraviolet light. The single sex chromosome (the X1 univalent) reoriented after irradiation of its spindle fibre or of any of the spindle fibres associated with the heteromorphic bivalent (the X2Y bivalent): the X1 moved toward the Y half-spindle, and sometimes rotated as it moved. Irradiations of autosomal spindle fibres did not induce X1 movements, and hence the induction of reorientation is specific to irradiation of the spindle fibres associated with X1 or X2Y. In no case did the X2Y bivalent reorient; hence, the X1 is the active chromosome in ensuring that there is non-random segregation in Neocurtilla spermatocytes. The irradiations sometimes caused the X2Y bivalent to contrast, but the reorientation movements of the X1 were independent of the contraction of the X2Y bivalent. We suggest that the X1 and X2Y chromosomal spindle fibres form a network that is able to send signals to the X1 univalent to cause it to reorient.


1993 ◽  
Vol 105 (2) ◽  
pp. 571-578 ◽  
Author(s):  
B.B. Czaban ◽  
A. Forer ◽  
A.S. Bajer

We used an ultraviolet microbeam to irradiate chromosomal spindle fibres in metaphase Haemanthus endosperm cells. An area of reduced birefringence (ARB) was formed at the position of the focussed ultraviolet light with all wavelengths we used (260, 270, 280, and 290 nm). The chromosomal spindle fibre regions (kinetochore microtubules) poleward from the ARBs were unstable: they shortened (from the ARB to the pole) either too fast for us to measure or at rates of about 40 microns per minute. The chromosomal spindle fibre regions (kinetochore microtubules) kinetochore-ward from the ARBs were stable: they did not change length for about 80 seconds, and then they increased in length at rates of about 0.7 microns per minute. The lengthening chromosomal spindle fibres sometimes grew in a direction different from that of the original chromosomal spindle fibre. The chromosome associated with the irradiated spindle fibre sometimes moved off the equator a few micrometers, towards the non-irradiated half-spindle. We discuss our results in relation to other results in the literature and conclude that kinetochores and poles influence the behaviour of kinetochore microtubules.


Sign in / Sign up

Export Citation Format

Share Document