The novel protein Ccz1p required for vacuolar assembly in Saccharomyces cerevisiae functions in the same transport pathway as Ypt7p

2000 ◽  
Vol 113 (23) ◽  
pp. 4301-4311 ◽  
Author(s):  
R. Kucharczyk ◽  
S. Dupre ◽  
S. Avaro ◽  
R. Haguenauer-Tsapis ◽  
P.P. Slonimski ◽  
...  

CCZ1 was previously identified by the sensitivity of ccz1(delta) mutants to high concentrations of Caffeine and the divalent ions Ca(2+)and Zn(2+). In this paper we show that deletion of CCZ1 leads to aberrant vacuole morphology, similar to the one reported for the family of vacuolar protein sorting (vps) mutants of class B. The ccz1(Δ) cells display severe vacuolar protein sorting defects for both the soluble carboxipeptidase Y and the membrane-bound alkaline phosphatase, which are delivered to the vacuole by distinct routes. Ccz1p is a membranous protein and the vast majority of Ccz1p resides in late endosomes. These results, along with a functional linkage found between the CCZ1 and YPT7 genes, indicate that the site of Ccz1p function is at the last step of fusion of multiple transport intermediates with the vacuole.

1997 ◽  
Vol 8 (8) ◽  
pp. 1529-1541 ◽  
Author(s):  
B F Horazdovsky ◽  
B A Davies ◽  
M N Seaman ◽  
S A McLaughlin ◽  
S Yoon ◽  
...  

A number of the Saccharomyces cerevisiae vacuolar protein-sorting (vps) mutants exhibit an altered vacuolar morphology. Unlike wild-type cells that contain 1-3 large vacuolar structures, the class B vps5 and vps17 mutant cells contain 10-20 smaller vacuole-like compartments. To explore the role of these VPS gene products in vacuole biogenesis, we cloned and sequenced VPS5 and characterized its protein products. The VPS5 gene is predicted to encode a very hydrophilic protein of 675 amino acids that shows significant sequence homology with mammalian sorting nexin-1. Polyclonal antiserum directed against the VPS5 gene product detects a single, cytoplasmic protein that is phosphorylated specifically on a serine residue(s). Subcellular fractionation studies indicate that Vps5p is associated peripherally with a dense membrane fraction distinct from Golgi, endosomal, and vacuolar membranes. This association was found to be dependent on the presence of another class B VPS gene product, Vps17p. Biochemical cross-linking studies demonstrated that Vps5p and Vps17p physically interact. Gene disruption experiments show that the VPS5 genes product is not essential for cell viability; however, cells carrying the null allele contain fragmented vacuoles and exhibit defects in vacuolar protein-sorting similar to vps17 null mutants. More than 95% of carboxypeptidase Y is secreted from these cells in its Golgi-modified p2 precursor form. Additionally, the Vps10p vacuolar protein-sorting receptor is mislocalized to the vacuole in vps5 mutant cells. On the basis of these and other observations, we propose that the Vps17p protein complex may participate in the intracellular trafficking of the Vps10p-sorting receptor, as well as other later-Golgi proteins.


2002 ◽  
Vol 13 (7) ◽  
pp. 2486-2501 ◽  
Author(s):  
Cecilia J. Bonangelino ◽  
Edna M. Chavez ◽  
Juan S. Bonifacino

The biosynthetic sorting of hydrolases to the yeast vacuole involves transport along two distinct routes referred to as the carboxypeptidase Y and alkaline phosphatase pathways. To identify genes involved in sorting to the vacuole, we conducted a genome-wide screen of 4653 homozygous diploid gene deletion strains ofSaccharomyces cerevisiae for missorting of carboxypeptidase Y. We identified 146 mutant strains that secreted strong-to-moderate levels of carboxypeptidase Y. Of these, only 53 of the corresponding genes had been previously implicated in vacuolar protein sorting, whereas the remaining 93 had either been identified in screens for other cellular processes or were only known as hypothetical open reading frames. Among these 93 were genes encoding: 1) the Ras-like GTP-binding proteins Arl1p and Arl3p, 2) actin-related proteins such as Arp5p and Arp6p, 3) the monensin and brefeldin A hypersensitivity proteins Mon1p and Mon2p, and 4) 15 novel proteins designated Vps61p-Vps75p. Most of the novel gene products were involved only in the carboxypeptidase Y pathway, whereas a few, including Mon1p, Mon2p, Vps61p, and Vps67p, appeared to be involved in both the carboxypeptidase Y and alkaline phosphatase pathways. Mutants lacking some of the novel gene products, including Arp5p, Arp6p, Vps64p, and Vps67p, were severely defective in secretion of mature α-factor. Others, such as Vps61p, Vps64p, and Vps67p, displayed defects in the actin cytoskeleton at 30°C. The identification and phenotypic characterization of these novel mutants provide new insights into the mechanisms of vacuolar protein sorting, most notably the probable involvement of the actin cytoskeleton in this process.


2012 ◽  
Vol 287 (20) ◽  
pp. 16256-16266 ◽  
Author(s):  
Nobuo N. Noda ◽  
Takafumi Kobayashi ◽  
Wakana Adachi ◽  
Yuko Fujioka ◽  
Yoshinori Ohsumi ◽  
...  

Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641881462
Author(s):  
Samantha K. Dziurdzik ◽  
Björn D.M. Bean ◽  
Elizabeth Conibear

Membrane contact sites are regulated through the controlled recruitment of constituent proteins. Yeast vacuolar protein sorting 13 (Vps13) dynamically localizes to membrane contact sites at endosomes, vacuoles, mitochondria, and the endoplasmic reticulum under different cellular conditions and is recruited to the prospore membrane during meiosis. Prior to our recent work, the mechanism for localization at contact sites was largely unknown. We identified Ypt35 as a novel Vps13 adaptor for endosomes and the nucleus-vacuole junction. Furthermore, we discovered a conserved recruitment motif in Ypt35 and found related motifs in the prospore membrane and mitochondrial adaptors, Spo71 and Mcp1, respectively. All three adaptors compete for binding to a six-repeat region of Vps13, suggesting adaptor competition regulates Vps13 localization. Here, we summarize and discuss the implications of our work, highlighting key outstanding questions.


2001 ◽  
Vol 4 (3) ◽  
pp. 259-262
Author(s):  
M. Shah Alam Bhuiyan ◽  
Yuji Ito . ◽  
Naotaka Tanaka . ◽  
Golam Sadik . ◽  
Kiyotaka Fujita . ◽  
...  

2016 ◽  
Vol 31 (suppl_1) ◽  
pp. i345-i345
Author(s):  
Hyo-Jung Choi ◽  
Mi Suk Lee ◽  
Dasom Kim ◽  
Eui-Jung Park ◽  
Yu-Jung Lee ◽  
...  

Author(s):  
Bruce F. Horazdovsky ◽  
Todd R. Graham ◽  
Scott D. Emr

Sign in / Sign up

Export Citation Format

Share Document