Nuclear envelope defects associated withLMNAmutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy

2001 ◽  
Vol 114 (24) ◽  
pp. 4447-4457 ◽  
Author(s):  
Wahyu Hendrati Raharjo ◽  
Paul Enarson ◽  
Teresa Sullivan ◽  
Colin L. Stewart ◽  
Brian Burke

Nuclear lamin A and C alleles that are linked to three distinct human diseases have been expressed both in HeLa cells and in fibroblasts derived from Lmna null mice. Point mutations that cause dilated cardiomyopathy (L85R and N195K) and autosomal dominant Emery-Dreifuss muscular dystrophy (L530P) modify the assembly properties of lamins A and C and cause partial mislocalization of emerin, an inner nuclear membrane protein, in HeLa cells. At the same time, these mutant lamins interfere with the targeting and assembly of endogenous lamins and in this way may cause significant changes in the molecular organization of the nuclear periphery. By contrast, lamin A and C molecules harboring a point mutation (R482W), which gives rise to a dominant form of familial partial lipodystrophy, behave in a manner that is indistinguishable from wild-type lamins A and C, at least with respect to targeting and assembly within the nuclear lamina. Taken together, these results suggest that nuclear structural defects could contribute to the etiology of both dilated cardiomyopathy and autosomal dominant Emery-Dreifuss muscular dystrophy.

2008 ◽  
Vol 36 (6) ◽  
pp. 1354-1358 ◽  
Author(s):  
Matthew A. Wheeler ◽  
Juliet A. Ellis

Mutations in genes encoding the nuclear envelope proteins emerin and lamin A/C lead to a range of tissue-specific degenerative diseases. These include dilated cardiomyopathy, limb-girdle muscular dystrophy and X-linked and autosomal dominant EDMD (Emery–Dreifuss muscular dystrophy). The molecular mechanisms underlying these disorders are poorly understood; however, recent work using animal models has identified a number of signalling pathways that are altered in response to the deletion of either emerin or lamin A/C or expression of Lmna mutants found in patients with laminopathies. A distinguishing feature of patients with EDMD is the association of a dilated cardiomyopathy with conduction defects. In the present article, we describe several of the pathways altered in response to an EDMD phenotype, which are known to be key mediators of hypertrophic growth, and focus on a possible role of an emerin–β-catenin interaction in the pathogenesis of this disease.


2017 ◽  
Vol 6 (1) ◽  
pp. 14-18
Author(s):  
Elise Alexandra Kikis ◽  
Megan Elizabeth Mastey

Emery-Dreifuss Muscular Dystrophy (EDMD) is a type of muscular dystrophy characterized by contractures, or shortening of muscles or joints in the elbows and Achilles tendons, muscle wasting and weakness as well as cardiomyopathy. There are two main forms of inherited EDMD, X-linked recessive and autosomal dominant. There is also a rarer form of autosomal recessive inheritance with only a few cases ever reported. The X-linked form of EDMD is caused by mutation of the STA gene that encodes the protein emerin, while the autosomal dominant form is caused by a missense mutation on the LMNA gene, which encodes lamin A/C proteins. Both emerin and lamin A/C are nuclear envelope proteins that interact with other proteins to create a connective network that attaches the nuclear lamina to the cytoskeleton. These nuclear envelope proteins interact via accessory proteins to chromatin and also thereby stimulate gene expression. The exact mechanism of how mutations in these genes lead to muscular dystrophy is not well understood. The “structural hypothesis,” states that the absence of these envelope proteins result in a weakened cell and would eventually end in nuclear disruption. The “gene regulatory hypothesis” states that emerin and lamin may be transcription factors whose absence results in tissue-specific effects. This review will addresses these hypotheses, describes what is known about the cell and molecular biology underlying EDMD and considers recent as advances in therapeutics.


2003 ◽  
Vol 286 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Kim Bechert ◽  
Mariana Lagos-Quintana ◽  
Jens Harborth ◽  
Klaus Weber ◽  
Mary Osborn

2002 ◽  
Vol 39 (6) ◽  
pp. 981-990 ◽  
Author(s):  
Eloisa Arbustini ◽  
Andrea Pilotto ◽  
Alessandra Repetto ◽  
Maurizia Grasso ◽  
Andrea Negri ◽  
...  

10.1038/6799 ◽  
1999 ◽  
Vol 21 (3) ◽  
pp. 285-288 ◽  
Author(s):  
Gisèle Bonne ◽  
Marina Raffaele Di Barletta ◽  
Shaida Varnous ◽  
Henri-Marc Bécane ◽  
El-Hadi Hammouda ◽  
...  

2004 ◽  
Vol 9 (7) ◽  
pp. 625-628 ◽  
Author(s):  
Matthew R. G. Taylor ◽  
Misi L. Robinson ◽  
Luisa Mestroni

The human LMNA gene, when mutated, has been shown to cause at least 7 human diseases: dilated cardiomyopathy, Emery Dreifuss muscular dystrophy, limb girdle muscular dystrophy, familial partial lipodystrophy, Charcot Marie tooth disease type II, mandibuloacral dysplasia, and Hutchinson-Gilford Progeria (OMIM #176670). This article describes a high-throughput method for screening the human lamin A/C ( LMNA) gene for genetic mutations and sequence variation using denaturing high-performance liquid chromatography (DHPLC). In the present study, 76 patients with dilated cardiomyopathy were screened for mutations using DHPLC and sequence analysis. Abnormal elution profiles were identified and sequenced on an ABI 377 automatic sequencer. Heterozygous LMNA mutations were detected in 8% of the affected patients. In addition, a number of intronic and exonic single nucleotide polymorphisms were identified. LMNA mutations are clinically relevant in at least 6 human diseases. This study provides a protocol for high-throughput LMNA analysis applicable both in the research and in the clinical diagnostic setting.


2002 ◽  
Vol 39 ◽  
pp. 136 ◽  
Author(s):  
Ryuichiro Anan ◽  
Hideshi Niimura ◽  
Takeshi Sasaki ◽  
J.G. Seidman ◽  
Christine E. Seidman ◽  
...  

Author(s):  
Xueping Fan ◽  
Guy A. Rouleau

Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping (ptosis), swallowing difficulties (dysphagia), and proximal limb weakness. The autosomal dominant form of this disease is caused by expansions of a (GCG)6 repeat to (GCG)8-13 in the PABPN1 gene. These mutations lead to the expansion of a polyalanine stretch from 10 to 12-17 alanines in the N-terminal domain of PABPN1. Mutated PABPN1 (mPABPN1) induces the formation of muscle intranuclear inclusions that are thought to be the hallmark of this disease. In this review, we discuss: 1) OPMD genetics and PABPN1 function studies; 2) diseases caused by polyalanine expansions and cellular polyalanine toxicity; 3) mPABPN1-induced intranuclear inclusion toxicity; 4) role of oligomerization of mPABPN1 in the formation and toxicity of OPMD intranuclear inclusions and; 5) recruitment of subcellular components to the OPMD inclusions. We present a potential molecular mechanism for OPMD pathogenesis that accounts for these observations.


Sign in / Sign up

Export Citation Format

Share Document