scholarly journals Interview with 2020 Hooke medal winner Ian Chambers

2020 ◽  
Vol 133 (20) ◽  
pp. jcs254219

ABSTRACTIan Chambers studied biochemistry at the University of Strathclyde in Glasgow, UK. He then did his PhD in the laboratory of Paul Harrison at the Beatson Institute for Cancer Research, also in Glasgow. Ian studied the control of gene expression during the differentiation of erythroid precursor cells, discovering that the amino acid selenocysteine is encoded by UGA, which until then was thought to work only as a termination codon. Ian did his post-doctoral work on the regulation of the human immunodeficiency virus (HIV) with Paul Berg at Stanford University in California, USA. In 1991, he returned to Scotland to work on stem cell regulation with Austin Smith at the Centre for Genome Research (later the Institute for Stem Cell Research) at the University of Edinburgh, UK. During that time, Ian identified the transcription factor Nanog, which directs efficient embryonic stem cell self-renewal. Ian started his research group in 2006 at the University of Edinburgh, where he is also a Professor of Pluripotent Stem Cell Biology. His laboratory tries to understand the regulatory networks and transcription factors that control the identity of pluripotent embryonic stem cells, and how these modulate cell fate decisions during the differentiation process. Ian is now the Head of the Institute for Stem Cell Research at University of Edinburgh, an EMBO member and a Fellow of the Royal Society of Edinburgh. Ian is the recipient of the 2020 Hooke Medal from the British Society for Cell Biology (BSCB).

2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


Cell ◽  
2007 ◽  
Vol 128 (2) ◽  
pp. 221-223 ◽  
Author(s):  
Andrew H. Sinclair ◽  
Peter R. Schofield

10.1038/86444 ◽  
2001 ◽  
Vol 7 (4) ◽  
pp. 397-399 ◽  
Author(s):  
Michael Antoniou

2005 ◽  
Vol 23 (7) ◽  
pp. 793-794 ◽  
Author(s):  
Jonathan D Moreno ◽  
Richard O Hynes

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Takashi Yokoo ◽  
Kei Matsumoto ◽  
Shinya Yokote

Significant advances have been made in stem cell research over the past decade. A number of nonhematopoietic sources of stem cells (or progenitor cells) have been identified, including endothelial stem cells and neural stem cells. These discoveries have been a major step toward the use of stem cells for potential clinical applications of organ regeneration. Accordingly, kidney regeneration is currently gaining considerable attention to replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, due to anatomic complications, the kidney is believed to be the hardest organ to regenerate; it is virtually impossible to imagine such a complicated organ being completely rebuilt from pluripotent stem cells by gene or chemical manipulation. Nevertheless, several groups are taking on this big challenge. In this manuscript, current advances in renal stem cell research are reviewed and their usefulness for kidney regeneration discussed. We also reviewed the current knowledge of the emerging field of renal stem cell biology.


Sign in / Sign up

Export Citation Format

Share Document