kidney regeneration
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 24)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
pp. 103-126
Author(s):  
Eric Daugas ◽  
Nicolas Charles ◽  
Ulrich Blank

2021 ◽  
Vol 20 ◽  
pp. 100345
Author(s):  
Carla Pou Casellas ◽  
Maarten B. Rookmaaker ◽  
Marianne C. Verhaar

2021 ◽  
Vol 22 (21) ◽  
pp. 11406
Author(s):  
Pei-Wen Lee ◽  
Bo-Sheng Wu ◽  
Chih-Yu Yang ◽  
Oscar Kuang-Sheng Lee

Acute kidney injury (AKI) causes a lot of harm to human health but is treated by only supportive therapy in most cases. Recent evidence shows that mesenchymal stem cells (MSCs) benefit kidney regeneration through releasing paracrine factors and extracellular vesicles (EVs) to the recipient kidney cells and are considered to be promising cellular therapy for AKI. To develop more efficient, precise therapies for AKI, we review the therapeutic mechanism of MSCs and MSC-derived EVs in AKI and look for a better understanding of molecular signaling and cellular communication between donor MSCs and recipient kidney cells. We also review recent clinical trials of MSC-EVs in AKI. This review summarizes the molecular mechanisms of MSCs’ therapeutic effects on kidney regeneration, expecting to comprehensively facilitate future clinical application for treating AKI.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1119
Author(s):  
Michael Namestnikov ◽  
Oren Pleniceanu ◽  
Benjamin Dekel

The worldwide rise in prevalence of chronic kidney disease (CKD) demands innovative bio-medical solutions for millions of kidney patients. Kidney regenerative medicine aims to replenish tissue which is lost due to a common pathological pathway of fibrosis/inflammation and rejuvenate remaining tissue to maintain sufficient kidney function. To this end, cellular therapy strategies devised so far utilize kidney tissue-forming cells (KTFCs) from various cell sources, fetal, adult, and pluripotent stem-cells (PSCs). However, to increase engraftment and potency of the transplanted cells in a harsh hypoxic diseased environment, it is of importance to co-transplant KTFCs with vessel forming cells (VFCs). VFCs, consisting of endothelial cells (ECs) and mesenchymal stem-cells (MSCs), synergize to generate stable blood vessels, facilitating the vascularization of self-organizing KTFCs into renovascular units. In this paper, we review the different sources of KTFCs and VFCs which can be mixed, and report recent advances made in the field of kidney regeneration with emphasis on generation of vascularized kidney tissue by cell transplantation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Yamamura ◽  
Kengo Furuichi ◽  
Yasuhiro Murakawa ◽  
Shigeki Hirabayashi ◽  
Masahito Yoshihara ◽  
...  

AbstractPAX2 is a transcription factor essential for kidney development and the main causative gene for renal coloboma syndrome (RCS). The mechanisms of PAX2 action during kidney development have been evaluated in mice but not in humans. This is a critical gap in knowledge since important differences have been reported in kidney development in the two species. In the present study, we hypothesized that key human PAX2-dependent kidney development genes are differentially expressed in nephron progenitor cells from induced pluripotent stem cells (iPSCs) in patients with RCS relative to healthy individuals. Cap analysis of gene expression revealed 189 candidate promoters and 71 candidate enhancers that were differentially activated by PAX2 in this system in three patients with RCS with PAX2 mutations. By comparing this list with the list of candidate Pax2-regulated mouse kidney development genes obtained from the Functional Annotation of the Mouse/Mammalian (FANTOM) database, we prioritized 17 genes. Furthermore, we ranked three genes—PBX1, POSTN, and ITGA9—as the top candidates based on closely aligned expression kinetics with PAX2 in the iPSC culture system and susceptibility to suppression by a Pax2 inhibitor in cultured mouse embryonic kidney explants. Identification of these genes may provide important information to clarify the pathogenesis of RCS, human kidney development, and kidney regeneration.


ACS Nano ◽  
2021 ◽  
Author(s):  
Kyoung-Won Ko ◽  
So-Yeon Park ◽  
Eun Hye Lee ◽  
Yong-In Yoo ◽  
Da-Seul Kim ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Dustin J Sokolowski ◽  
Mariela Faykoo-Martinez ◽  
Lauren Erdman ◽  
Huayun Hou ◽  
Cadia Chan ◽  
...  

Abstract RNA sequencing (RNA-seq) is widely used to identify differentially expressed genes (DEGs) and reveal biological mechanisms underlying complex biological processes. RNA-seq is often performed on heterogeneous samples and the resulting DEGs do not necessarily indicate the cell-types where the differential expression occurred. While single-cell RNA-seq (scRNA-seq) methods solve this problem, technical and cost constraints currently limit its widespread use. Here we present single cell Mapper (scMappR), a method that assigns cell-type specificity scores to DEGs obtained from bulk RNA-seq by leveraging cell-type expression data generated by scRNA-seq and existing deconvolution methods. After evaluating scMappR with simulated RNA-seq data and benchmarking scMappR using RNA-seq data obtained from sorted blood cells, we asked if scMappR could reveal known cell-type specific changes that occur during kidney regeneration. scMappR appropriately assigned DEGs to cell-types involved in kidney regeneration, including a relatively small population of immune cells. While scMappR can work with user-supplied scRNA-seq data, we curated scRNA-seq expression matrices for ∼100 human and mouse tissues to facilitate its stand-alone use with bulk RNA-seq data from these species. Overall, scMappR is a user-friendly R package that complements traditional differential gene expression analysis of bulk RNA-seq data.


2021 ◽  
pp. 1-27
Author(s):  
Kenji Osafune ◽  
Oren Pleniceanu ◽  
Benjamin Dekel

2020 ◽  
Author(s):  
Dustin J. Sokolowski ◽  
Mariela Faykoo-Martinez ◽  
Lauren Erdman ◽  
Huayun Hou ◽  
Cadia Chan ◽  
...  

AbstractRNA sequencing (RNA-seq) is widely used to identify differentially expressed genes (DEGs) and reveal biological mechanisms underlying complex biological processes. RNA-seq is often performed on heterogeneous samples and the resulting DEGs do not necessarily indicate the cell types where the differential expression occurred. While single-cell RNA-seq (scRNA-seq) methods solve this problem, technical and cost constraints currently limit its widespread use. Here we present single cell Mapper (scMappR), a method that assigns cell-type specificity scores to DEGs obtained from bulk RNA-seq by integrating cell-type expression data generated by scRNA-seq and existing deconvolution methods. After benchmarking scMappR using RNA-seq data obtained from sorted blood cells, we asked if scMappR could reveal known cell-type specific changes that occur during kidney regeneration. We found that scMappR appropriately assigned DEGs to cell-types involved in kidney regeneration, including a relatively small proportion of immune cells. While scMappR can work with any user supplied scRNA-seq data, we curated scRNA-seq expression matrices for ∼100 human and mouse tissues to facilitate its use with bulk RNA-seq data alone. Overall, scMappR is a user-friendly R package that complements traditional differential expression analysis available at CRAN.HighlightsscMappR integrates scRNA-seq and bulk RNA-seq to re-calibrate bulk differentially expressed genes (DEGs).scMappR correctly identified immune-cell expressed DEGs from a bulk RNA-seq analysis of mouse kidney regeneration.scMappR is deployed as a user-friendly R package available at CRAN.


Sign in / Sign up

Export Citation Format

Share Document