organ regeneration
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 100)

H-INDEX

34
(FIVE YEARS 7)

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Hanxiao Chen ◽  
Luqi Xue ◽  
Guidong Gong ◽  
Jiezhou Pan ◽  
Xiaoling Wang ◽  
...  

AbstractCollagen, the main component of mammal skin, has been traditionally used in leather manufacturing for thousands of years due to its diverse physicochemical properties. Collagen is the most abundant protein in mammals and the main component of the extracellular matrix (ECM). The properties of collagen also make it an ideal building block for the engineering of materials for a range of biomedical applications. Reproductive medicine, especially human fertility preservation strategies and reproductive organ regeneration, has attracted significant attention in recent years as it is key in resolving the growing social concern over aging populations worldwide. Collagen-based biomaterials such as collagen hydrogels, decellularized ECM (dECM), and bioengineering techniques including collagen-based 3D bioprinting have facilitated the engineering of reproductive tissues. This review summarizes the recent progress in applying collagen-based biomaterials in reproductive. Furthermore, we discuss the prospects of collagen-based materials for engineering artificial reproductive tissues, hormone replacement therapy, and reproductive organ reconstruction, aiming to inspire new thoughts and advancements in engineered reproductive tissues research. Graphical abstract


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kaisa Ikkala ◽  
Vassilis Stratoulias ◽  
Frederic Michon

AbstractThe cornea, transparent and outermost structure of camera-type eyes, is prone to environmental challenges, but has remarkable wound healing capabilities which enables to preserve vision. The manner in which cell plasticity impacts wound healing remains to be determined. In this study, we report rapid wound closure after zebrafish corneal epithelium abrasion. Furthermore, by investigating the cellular and molecular events taking place during corneal epithelial closure, we show the induction of a bilateral response to a unilateral wound. Our transcriptomic results, together with our TGF-beta receptor inhibition experiments, demonstrate conclusively the crucial role of TGF-beta signaling in corneal wound healing. Finally, our results on Pax6 expression and bilateral wound healing, demonstrate the decisive impact of epithelial cell plasticity on the pace of healing. Altogether, our study describes terminally differentiated cell competencies in the healing of an injured cornea. These findings will enhance the translation of research on cell plasticity to organ regeneration.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Aundrea K. Westfall ◽  
Blair W. Perry ◽  
Abu H. M. Kamal ◽  
Nicole R. Hales ◽  
Jarren C. Kay ◽  
...  

Abstract Background Snakes exhibit extreme intestinal regeneration following months-long fasts that involves unparalleled increases in metabolism, function, and tissue growth, but the specific molecular control of this process is unknown. Understanding the mechanisms that coordinate these regenerative phenotypes provides valuable opportunities to understand critical pathways that may control vertebrate regeneration and novel perspectives on vertebrate regenerative capacities. Results Here, we integrate a comprehensive set of phenotypic, transcriptomic, proteomic, and phosphoproteomic data from boa constrictors to identify the mechanisms that orchestrate shifts in metabolism, nutrient uptake, and cellular stress to direct phases of the regenerative response. We identify specific temporal patterns of metabolic, stress response, and growth pathway activation that direct regeneration and provide evidence for multiple key central regulatory molecules kinases that integrate these signals, including major conserved pathways like mTOR signaling and the unfolded protein response. Conclusion Collectively, our results identify a novel switch-like role of stress responses in intestinal regeneration that forms a primary regulatory hub facilitating organ regeneration and could point to potential pathways to understand regenerative capacity in vertebrates.


Author(s):  
Joshua G. Medina-Feliciano ◽  
José E. García-Arrarás

Which genes and gene signaling pathways mediate regenerative processes? In recent years, multiple studies, using a variety of animal models, have aimed to answer this question. Some answers have been obtained from transcriptomic and genomic studies where possible gene and gene pathway candidates thought to be involved in tissue and organ regeneration have been identified. Several of these studies have been done in echinoderms, an animal group that forms part of the deuterostomes along with vertebrates. Echinoderms, with their outstanding regenerative abilities, can provide important insights into the molecular basis of regeneration. Here we review the available data to determine the genes and signaling pathways that have been proposed to be involved in regenerative processes. Our analyses provide a curated list of genes and gene signaling pathways and match them with the different cellular processes of the regenerative response. In this way, the molecular basis of echinoderm regenerative potential is revealed, and is available for comparisons with other animal taxa.


2021 ◽  
Vol 9 (4) ◽  
pp. 51
Author(s):  
Lorenzo Alibardi

Initial observations on the regeneration of the tail in lizards were recorded in brief notes by Aristotle over 2000 years ago, as reported in his book, History of Animals (cited from [...]


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 508
Author(s):  
Sonthikan Sitthisang ◽  
Jeeranan Boonruangkan ◽  
Meng Fatt Leong ◽  
Kerm Sin Chian ◽  
Young-Jin Kim

Decellularization is the process of removing cellular components from native tissues or organs to obtain an acellular, collagenous scaffold for use in tissue engineering and organ regeneration. Surfactants are widely used to produce acellular scaffolds for clinical applications. However, cell–surfactants interactions have not been studied in depth. Cell-surfactant interaction was studied in a time-lapsed manner using sodium dodecyl sulfate (SDS) solution (surfactant) on adherent L929 fibroblasts as a test solution, phosphate-buffered saline (PBS) solution as control solution (isotonic), and deionized water as positive test solution (hypotonic), respectively. The QPI results show changes in the relative height and cross-sectional area of the cells, with various test solutions and exposure times. In particular, it was observed that the removal of the cell with SDS involved the disruption of the cellular membrane and detachment of the cell contents from the adhering surface. This study demonstrated the feasibility of using the QPI technique to understand the decellularization process.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Junjie Hou ◽  
Qinchao Zhou ◽  
Xiaojun Zhu ◽  
Jinrong Peng ◽  
Jing-Wei Xiong

AbstractOrgan regeneration is an important, fascinating, and old topic while much remains unknown in spite of extensive investigations for decades. From March 25th to 27th, 2021, the Third Chinese Symposium on Organ Regeneration took place in the beautiful ocean city of Zhoushan, Zhejiang, China. This biennial conference attracted ~ 300 academic attendees: students, postdoctoral fellows, and principal investigators, in addition to few industrial investigators. The mixed live and virtual talks covered the broad field of organ regeneration from different animal organisms to human organoids, and concluded with some impressive advances on inflammatory signaling, regenerative signaling mechanisms, new technologies, and applications for organ regeneration.


Sign in / Sign up

Export Citation Format

Share Document