The cell cycle and its relationship to development in Acanthamoeba castellanii

1987 ◽  
Vol 88 (5) ◽  
pp. 579-590
Author(s):  
MICHAEL STÖHR ◽  
KURT BOMMERT ◽  
INGRID SCHULZE ◽  
HELGA JANTZEN

The cell cycle and the relationship between particular cell cycle phases and the differentiation of trophozoites into cysts were reinvestigated in Acanthamoeba castellanii using flow fluorometric measurements of nuclear DNA content and synthesis and synchronization of cells by release from the stationary phase. The investigation was performed with cultures growing in non-defined medium (ND cells) showing a high degree of encystation in response to starvation and with subcultures growing in chemically defined nutrient medium (D cells) exhibiting a very low encystation competence. In both cultures the cell cycle starts with a short S phase taking place simultaneously with cytokinesis followed by a long G2 phase. A G1 phase seems to be either absent or very short. Synchronization experiments reveal that in ND cells encystation is initiated from a particular position of late G2. The high encystation competence of stationary phase ND cells seems to be due to arrest of cells at this particular cell cycle position. The lack of encystation competence of stationary phase D cells correlates with the loss of accumulation of cells at this particular stage of the cell cycle. This change of the property of cells is related to the growth condition and not to an irreversible loss of encystation competence of D cells.

1988 ◽  
Vol 91 (3) ◽  
pp. 389-399
Author(s):  
H. Jantzen ◽  
I. Schulze ◽  
M. Stohr

In Acanthamoeba, two different cell types are known. Trophozoites are generated in the mitotic division cycle, whereas cells committed at late G2 phase of the cell cycle develop into cysts in response to starvation. In this paper we study the role of timing of DNA replication in regulating development. The investigation was performed with cultures growing in a non-defined medium (ND cells) that show a high encystation competence and with cultures that have been growing in a chemically defined medium (D cells) for several years and show a low encystation competence. Bivariate DNA/BrdUrd distributions show that ND cells progress through a cycle in which the short replication phase occurs immediately and exclusively after prior completion of mitosis. These cells arrest at late G2 phase of the cell cycle during the stationary stage. In D cells, DNA replication and mitosis seem to be uncoupled, since replication takes place before as well as after mitosis. These cells arrest within their replication phase during the stationary stage. These findings indicate that D cells do not progress into late G2 phase of the cell cycle and hence do not have the competence for commitment. The alternate timing of DNA replication and the low encystation competence of D cells can be reversed by cultivation of these cells in ND medium. Synchronization experiments reveal that late G2 phase ND cells exhibit a low capacity for BrdUrd incorporation and growth after transfer into D medium, whereas ND cells of earlier phases of the cell cycle show premitotic incorporation of BrdUrd into nuclear DNA and growth. These findings suggest on the one hand that premitotic DNA synthesis is a prerequisite for growth of cells in D medium, and that there is a dependence of the induction of premitotic DNA synthesis on the cell cycle, and on the other hand that a reciprocal relationship exists between the capacity of premitotic DNA synthesis and commitment to differentiation.


1999 ◽  
Vol 26 (3) ◽  
pp. 273 ◽  
Author(s):  
Manuel Le Bris ◽  
Nicole Michaux-Ferrière ◽  
Yves Jacob ◽  
Alain Poupet ◽  
Philippe Barthe ◽  
...  

In vitro cultures showed that the proximal buds isolated from a rose (Rosa hybrida L. cv. Ruidriko Vivaldi®) stem were endodormant. Growth and a high percentage of bud break could be observed when cultures were treated with fluridone, an inhibitor of carotenoid synthesis. Flow cytometry determination of nuclear DNA content revealed that cell cycle activity of endodormant buds was arrested in the G 1 phase. Upon culture, the large decrease in bud ABA content was responsible for the progress from G1 to G2 phase whatever the culture medium. However, in control culture, neither cell division nor leaf primordium initiation could be observed and cells appeared stably arrested in G2 . By contrast, with fluridone, an additional ABA decrease was observed resulting from an inhibition of its synthesis inside the bud. New leaf primordia were initiated and many figures of mitosis could be observed, indicating that intense activity of cell division occurred after DNA replication. Therefore, the results indicate that, as long as ABA was synthesized inside the buds, cell cycle was arrested in G2 phase and buds remained dormant. Continued in situ ABA biosynthesis appears, therefore, to be required for the maintenance of bud dormancy.


Many components of cell and nuclear size and mass are correlated with nuclear DNA content in plants, as also are the durations and rates of such developmental processes as mitosis and meiosis. It is suggested that the multiple effects of the mass of nuclear DNA which affect all cells and apply throughout the life of the plant can together determine the minimum generation time for each species. The durations of mitosis and of meiosis are both positively correlated with nuclear DNA content and, therefore, species with a short minimum generation time might be expected to have a shorter mean cell cycle time and mean meiotic duration, and a lower mean nuclear DNA content, than species with a long mean minimum generation time. In tests of this hypothesis, using data collated from the literature, it is shown that the mean cell cycle time and the mean meiotic duration in annual species is significantly shorter than in perennial species. Furthermore, the mean nuclear DNA content of annual species is significantly lower than for perennial species both in dicotyledons and monocotyledons. Ephemeral species have a significantly lower mean nuclear DNA content than annual species. Among perennial monocotyledons the mean nuclear DNA content of species which can complete a life cycle within one year (facultative perennials) is significantly lower than the mean nuclear DNA content of those which cannot (obligate perennials). However, the mean nuclear DNA content of facultative perennials does not differ significantly from the mean for annual species. It is suggested that the effects of nuclear DNA content on the duration of developmental processes are most obvious during its determinant stages, and that the largest effects of nuclear DNA mass are expressed at times when development is slowest, for instance, during meiosis or at low temperature. It has been suggested that DNA influences development in two ways, directly through its informational content, and indirectly by the physical-mechanical effects of its mass. The term 'nucleotype' is used to describe those conditions of the nucleus which effect the phenotype independently of the informational content of the DNA. It is suggested that cell cycle time, meiotic duration, and minimum generation time are determined by the nucleotype. In addition, it may be that satellite DNA is significant in its nucleotypic effects on developmental processes.


1985 ◽  
Vol 27 (6) ◽  
pp. 766-775 ◽  
Author(s):  
Arturo Martínez ◽  
Héctor D. Ginzo

There is a wide variation in the nuclear DNA content and chromosome size between the species belonging to the T. crassifolia and T. virginiana alliances (all the species but one are native to Central and North America). Also the DNA content per genome decreases when the ploidy level increases within the same specific polyploid complex with three ploidy levels (2x, 4x, and 6x). In contrast, no variation was found in the DNA content per genome between different ploidy levels in the T. fluminensis alliance (all the species are native to South America) where they range from 6x to 22x. Since all the species described here are perennials with various life forms, it was possible to analyze the relationship between the DNA content and their vegetative adaptation to the environment. The more specialized species (geophytes and hemicryptophytes) have a higher amount of DNA than the chamaephytes adapted to live in relatively more mesic regions. In the species living in Central and North America there is a positive correlation between the increase in DNA content and the latitude of their native regions.Key words: Tradescantia, DNA content, geographical distribution, life forms, polyploidy.


1987 ◽  
Vol 8 (4) ◽  
pp. 315-320 ◽  
Author(s):  
Jelle W.F. Reumer ◽  
Charles-H. Thiébaud

AbstractThe relationship is studied between the volume of osteocyte lacunae and the nuclear DNA content and level of ploidy in the genus Xenopus. The lacunae volume and the DNA content appear strongly correlated. The possible use of this relationship in the study of the evolution of the genus is discussed.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5125-5125
Author(s):  
Cintia Do Couto Mascarenhas ◽  
Anderson Ferreira Cunha ◽  
Ana Flavia Brugnerotto ◽  
Sheley Gambero ◽  
Joao Machado-Neto ◽  
...  

Abstract Abstract 5125 The TOB1 gene is a transcription factor responsible for the transduction of the gene ERBB2. It is a member of a family of cell suppressor proliferation proteins called TOB/BTG1 family; also, this gene operates on the inhibition of neoplastic transformation. The TOB1 gene presents a decreased expression in several types of cancer such as lung, breast, thyroid and stomach cancer. However, the function of this gene in chronic myeloid leukemia (CML) remains unknown. Aiming to evaluate the inhibition of gene TOB1 into BCR-ABL positive cells and trying to elucidate the molecular mechanisms associated with the inhibition of this gene in the CML we proceed to a more detailed study of this gene. The inhibition of this gene in K562 cells was performed using specific lentivirus. The effect of silencing TOB1 in the proliferation of K562 cells was assessed by the MTT assay after 48 hours of culture; in shTOB1 the proliferation was increased in comparison with shControl cells. To evaluate the synergistic effect between the inhibition of kinase tyrosine activity of BCR-ABL and the inhibition of TOB1 we performed a treatment with different concentrations of imatinib (0. 1, 0. 5 and 1μM), but we observed the decrease in cell proliferation of shTOB1 cells to similar levels of shControl cells only at the 1μM concentration. Therefore, the TOB1 silencing increased the proliferation of K562 cells without an additional effect of a treatment with Imatinib. To analyze the clonogenicity, we performed a formation of colonies assay, in methylcellulose, to determine whether silencing TOB1 could cause a change in the clonal growth of positive BCR-ABL cells. There was no significant change in the number of colonies that grew in cell culture shTOB1 compared to shControl cells. These results suggest that silencing TOB1 in K562 cells may not change the clonogenicity. In the assessment of cell cycle, the flow cytometry analysis revealed a significant accumulation of K562 cells in S phase, with consequent reduction of cells in the G2 phase of the cell cycle in cells shTOB1 compared to cells shControl. The TOB1 gene silencing in K562 cells kept the cells in the S phase and prevented the entry of cells in the G2 phase showing that the inhibition of gene TOB1 induced an increase in proliferation of K562 BCR-ABL cells. The level of apoptosis was assessed by flow cytometry after labeling the cells with anexin-V/PI. The Imatinib treatment presented dose-response in the induction of apoptosis as expected. However, a cumulative effect with TOB1 silencing was not observed. Furthermore, the apoptosis was also assessed by assays of caspases 3, 8 and 9, which showed an increase of the caspase activity of shControl cells in relation of the shTOB1 cells, showing that inhibition of this gene also changes the level of apoptosis. These results corroborate the literature data that report the relationship of this tumour suppressor gene in signalling pathways related to angiogenesis, carcinogenesis, apoptosis and metastasis. When we relate the results obtained with the LMC, we can consider the possibility of TOB1 regulation changes be related to modification of important signalling pathways such as AKT, PI3K, STAT3 and STAT5, among others. Furthermore, the inhibition of TOB1 may be related with an increase on the number of BCR-ABL positive cells and subsequent disease progression. In conclusion, this study confirmed literature data showing that TOB1 gene works as a tumour suppressor protein in cells of many types of cancer. From this work we can infer that in CML the expression of this gene is transformed, resulting in changing of the capacity of induction of apoptosis, decrease tumour necrosis and increase cell proliferation. This work was supported by FAPESP and INCT. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 23 (10) ◽  
pp. 1030-1039
Author(s):  
Damian J. Matuszewski ◽  
Carolina Wählby ◽  
Cecilia Krona ◽  
Sven Nelander ◽  
Ida-Maria Sintorn

Image-based analysis is an increasingly important tool to characterize the effect of drugs in large-scale chemical screens. Herein, we present image and data analysis methods to investigate population cell-cycle dynamics in patient-derived brain tumor cells. Images of glioblastoma cells grown in multiwell plates were used to extract per-cell descriptors, including nuclear DNA content. We reduced the DNA content data from per-cell descriptors to per-well frequency distributions, which were used to identify compounds affecting cell-cycle phase distribution. We analyzed cells from 15 patient cases representing multiple subtypes of glioblastoma and searched for clusters of cell-cycle phase distributions characterizing similarities in response to 249 compounds at 11 doses. We show that this approach applied in a blind analysis with unlabeled substances identified drugs that are commonly used for treating solid tumors as well as other compounds that are well known for inducing cell-cycle arrest. Redistribution of nuclear DNA content signals is thus a robust metric of cell-cycle arrest in patient-derived glioblastoma cells.


2017 ◽  
Author(s):  
Xiao-Yu Guo ◽  
Yao Wang ◽  
Ping Xu ◽  
Guo-Hua Yu ◽  
Li-Yong Zhang ◽  
...  

AbstractImprovement of crop drought resistance and water use efficiency (WUE) has been a major endeavor in agriculture. ERECTA is the first identified major effector of water use efficiency. However, the underlying molecular mechanism is not well understood. Here, we report a genetic pathway, composed of EDT1/HDG11, ERECTA, and E2Fa loci, which regulates water use efficiency by modulating stomatal density. The HD-START transcription factor EDT1/HDG11 transcriptionally activates ERECTA expression by binding to an HD cis-element in the ERECTA promoter. ERECTA in turn relies on E2Fa to control the expression of cell-cycle related genes and the transition from mitosis to endocycle, which leads to increased nuclear DNA content in leaf cells, and therefore increased cell size and decreased stomatal density. The decreased stomatal density improves plant WUE. Our study demonstrates the EDT1/HDG11-ERECTA-E2Fa genetic pathway that reduces stomatal density by increasing cell size, providing a new avenue to improve WUE of crops.


Sign in / Sign up

Export Citation Format

Share Document