The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe

1988 ◽  
Vol 89 (3) ◽  
pp. 343-357 ◽  
Author(s):  
I.M. Hagan ◽  
J.S. Hyams

We have characterized the changes in microtubule organization that occur through the cell division cycle of the fission yeast Schizosaccharomyces pombe by indirect immunofluorescence microscopy. During interphase, groups of cytoplasmic microtubules, independent of the spindle pole body (SPB), form an array extending between the cell tips. These microtubules are involved in positioning the nucleus at the cell equator and in the establishment of cell polarity. At mitosis, the interphase array disappears and is replaced by an intranuclear spindle extending between the now duplicated SPBs. Elongation of the spindle sees the appearance of astral microtubules emanating from the cytoplasmic face of the SPBs. These persist until the end of anaphase whereupon the spindle microtubules depolymerize and two microtubule organizing centres (MTOCs) at the cell equator re-establish the interphase array. We have used the unique properties of various cell division cycle mutants to investigate further the function of these different microtubule arrays and their temporal and positional control.

2005 ◽  
Vol 16 (6) ◽  
pp. 3052-3063 ◽  
Author(s):  
Srinivas Venkatram ◽  
Jennifer L. Jennings ◽  
Andrew Link ◽  
Kathleen L. Gould

Microtubules regulate diverse cellular processes, including chromosome segregation, nuclear positioning, and cytokinesis. In many organisms, microtubule nucleation requires γ-tubulin and associated proteins present at specific microtubule organizing centers (MTOCs). In fission yeast, interphase cytoplasmic microtubules originate from poorly characterized interphase MTOCs and spindle pole body (SPB), and during late anaphase from the equatorial MTOC (EMTOC). It has been previously shown that Mto1p (Mbo1p/Mod20p) function is important for the organization/nucleation of all cytoplasmic microtubules. Here, we show that Mto2p, a novel protein, interacts with Mto1p and is important for establishing a normal interphase cytoplasmic microtubule array. In addition, mto2Δ cells fail to establish a stable EMTOC and localize γ-tubulin complex members to this medial structure. As predicted from these functions, Mto2p localizes to microtubules, the SPB, and the EMTOC in an Mto1p-dependent manner. mto2Δ cells fail to anchor the cytokinetic actin ring in the medial region of the cell and under conditions that mildly perturb actin structures, these rings unravel in mto2Δ cells. Our results suggest that the Mto2p and the EMTOC are critical for anchoring the cytokinetic actin ring to the medial region of the cell and for proper coordination of mitosis with cytokinesis.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Qian Zhu ◽  
Zhaodi Jiang ◽  
Xiangwei He

During sexual reproduction, the zygote must inherit exactly one centrosome (spindle pole body [SPB] in yeasts) from the gametes, which then duplicates and assembles a bipolar spindle that supports the subsequent cell division. Here, we show that in the fission yeast Schizosaccharomyces pombe, the fusion of SPBs from the gametes is blocked in polyploid zygotes. As a result, the polyploid zygotes cannot proliferate mitotically and frequently form supernumerary SPBs during subsequent meiosis, which leads to multipolar nuclear divisions and the generation of extra spores. The blockage of SPB fusion is caused by persistent SPB localization of Pcp1, which, in normal diploid zygotic meiosis, exhibits a dynamic association with the SPB. Artificially induced constitutive localization of Pcp1 on the SPB is sufficient to cause blockage of SPB fusion and formation of extra spores in diploids. Thus, Pcp1-dependent SPB quantity control is crucial for sexual reproduction and ploidy homeostasis in fission yeast.


Genetics ◽  
1980 ◽  
Vol 96 (4) ◽  
pp. 859-876 ◽  
Author(s):  
David Schild ◽  
Breck Byers

ABSTRACT The meiotic effects of two cell-division-cycle mutations of Saccharomyces cerevisiae (cdc5 and cdc14) have been examined. These mutations were isolated by L. H. Hartwell and his colleagues and characterized as defective in mitosis, causing a temperature-sensitive arrest in late nuclear division. When subjected to the restrictive temperature in meiosis, diploid cells homozygous for either of these mutations generally proceeded through premeiotic DNA synthesis and commitment to meiotic levels of recombination, but then arrested at a stage following spindle pole body (SPB) duplication and separation. The two SPBs lacked the interconnection by spindle microtubules typical of the complete meiosis I spindle. Challenge of these homozygotes by a semi-restrictive temperature often caused the production of asci containing two diploid spores. Genetic analysis of the viable pairs of spores revealed that each spore had become homozygous for centromere-linked markers significantly more frequently than for distal markers, indicating that the two spores each contained pairs of sister centromeres that had co-segregated in the reductional division of meiosis I. Ultrastructural analysis of the cdc5 homozygote demonstrated that these cells had completed meiosis I and formed two meiosis II spindles, but that the latter remained unusually short. This resulted in the encapsulation of both poles of each spindle within a single spore wall. These mutations therefore are defective in both meiotic divisions, as well as in the mitotic division described originally.


2004 ◽  
Vol 15 (4) ◽  
pp. 1609-1622 ◽  
Author(s):  
Masamitsu Sato ◽  
Leah Vardy ◽  
Miguel Angel Garcia ◽  
Nirada Koonrugsa ◽  
Takashi Toda

The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules.


2014 ◽  
Vol 25 (18) ◽  
pp. 2735-2749 ◽  
Author(s):  
I-Ju Lee ◽  
Ning Wang ◽  
Wen Hu ◽  
Kersey Schott ◽  
Jürg Bähler ◽  
...  

Centrosomes play critical roles in the cell division cycle and ciliogenesis. Sfi1 is a centrin-binding protein conserved from yeast to humans. Budding yeast Sfi1 is essential for the initiation of spindle pole body (SPB; yeast centrosome) duplication. However, the recruitment and partitioning of Sfi1 to centrosomal structures have never been fully investigated in any organism, and the presumed importance of the conserved tryptophans in the internal repeats of Sfi1 remains untested. Here we report that in fission yeast, instead of doubling abruptly at the initiation of SPB duplication and remaining at a constant level thereafter, Sfi1 is gradually recruited to SPBs throughout the cell cycle. Like an sfi1Δ mutant, a Trp-to-Arg mutant (sfi1-M46) forms monopolar spindles and exhibits mitosis and cytokinesis defects. Sfi1-M46 protein associates preferentially with one of the two daughter SPBs during mitosis, resulting in a failure of new SPB assembly in the SPB receiving insufficient Sfi1. Although all five conserved tryptophans tested are involved in Sfi1 partitioning, the importance of the individual repeats in Sfi1 differs. In summary, our results reveal a link between the conserved tryptophans and Sfi1 partitioning and suggest a revision of the model for SPB assembly.


2015 ◽  
Vol 210 (1) ◽  
pp. 99-113 ◽  
Author(s):  
Damien Laporte ◽  
Fabien Courtout ◽  
Benoît Pinson ◽  
Jim Dompierre ◽  
Bénédicte Salin ◽  
...  

Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament–containing structures. Astonishingly, MTs are also stabilized and rearranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly, we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskeleton structures that improve the swiftness of the transition back to proliferation.


Sign in / Sign up

Export Citation Format

Share Document