scholarly journals Mto2p, a Novel Fission Yeast Protein Required for Cytoplasmic Microtubule Organization and Anchoring of the Cytokinetic Actin Ring

2005 ◽  
Vol 16 (6) ◽  
pp. 3052-3063 ◽  
Author(s):  
Srinivas Venkatram ◽  
Jennifer L. Jennings ◽  
Andrew Link ◽  
Kathleen L. Gould

Microtubules regulate diverse cellular processes, including chromosome segregation, nuclear positioning, and cytokinesis. In many organisms, microtubule nucleation requires γ-tubulin and associated proteins present at specific microtubule organizing centers (MTOCs). In fission yeast, interphase cytoplasmic microtubules originate from poorly characterized interphase MTOCs and spindle pole body (SPB), and during late anaphase from the equatorial MTOC (EMTOC). It has been previously shown that Mto1p (Mbo1p/Mod20p) function is important for the organization/nucleation of all cytoplasmic microtubules. Here, we show that Mto2p, a novel protein, interacts with Mto1p and is important for establishing a normal interphase cytoplasmic microtubule array. In addition, mto2Δ cells fail to establish a stable EMTOC and localize γ-tubulin complex members to this medial structure. As predicted from these functions, Mto2p localizes to microtubules, the SPB, and the EMTOC in an Mto1p-dependent manner. mto2Δ cells fail to anchor the cytokinetic actin ring in the medial region of the cell and under conditions that mildly perturb actin structures, these rings unravel in mto2Δ cells. Our results suggest that the Mto2p and the EMTOC are critical for anchoring the cytokinetic actin ring to the medial region of the cell and for proper coordination of mitosis with cytokinesis.

1988 ◽  
Vol 89 (3) ◽  
pp. 343-357 ◽  
Author(s):  
I.M. Hagan ◽  
J.S. Hyams

We have characterized the changes in microtubule organization that occur through the cell division cycle of the fission yeast Schizosaccharomyces pombe by indirect immunofluorescence microscopy. During interphase, groups of cytoplasmic microtubules, independent of the spindle pole body (SPB), form an array extending between the cell tips. These microtubules are involved in positioning the nucleus at the cell equator and in the establishment of cell polarity. At mitosis, the interphase array disappears and is replaced by an intranuclear spindle extending between the now duplicated SPBs. Elongation of the spindle sees the appearance of astral microtubules emanating from the cytoplasmic face of the SPBs. These persist until the end of anaphase whereupon the spindle microtubules depolymerize and two microtubule organizing centres (MTOCs) at the cell equator re-establish the interphase array. We have used the unique properties of various cell division cycle mutants to investigate further the function of these different microtubule arrays and their temporal and positional control.


2001 ◽  
Vol 114 (13) ◽  
pp. 2427-2435 ◽  
Author(s):  
Bunshiro Goto ◽  
Koei Okazaki ◽  
Osami Niwa

Chromosomes are not packed randomly in the nucleus. The Rabl orientation is an example of the non-random arrangement of chromosomes, centromeres are grouped in a limited area near the nuclear periphery and telomeres are located apart from centromeres. This orientation is established during mitosis and maintained through subsequent interphase in a range of species. We report that a Rabl-like configuration can be formed de novo without a preceding mitosis during the transition from the sexual phase to the vegetative phase of the life cycle in fission yeast. In this process, each of the dispersed centromeres is often associated with a novel Sad1-containing body that is contacting a cytoplasmic microtubule laterally (Sad1 is a component of the spindle pole body (SPB)). The Sad1-containing body was colocalized with other known SPB components, Kms1 and Spo15 but not with Cut12, indicating that it represents a novel SPB-related complex. The existence of the triplex structure (centromere-microtubule-Sad1 body) suggests that the clustering of centromeres is controlled by a cytoplasmic microtubular system. Accordingly, when microtubules are destabilized, clustering is markedly reduced.


2004 ◽  
Vol 15 (4) ◽  
pp. 1609-1622 ◽  
Author(s):  
Masamitsu Sato ◽  
Leah Vardy ◽  
Miguel Angel Garcia ◽  
Nirada Koonrugsa ◽  
Takashi Toda

The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules.


2002 ◽  
Vol 13 (7) ◽  
pp. 2360-2373 ◽  
Author(s):  
Akiko Fujita ◽  
Leah Vardy ◽  
Miguel Angel Garcia ◽  
Takashi Toda

γ-Tubulin functions as a multiprotein complex, called the γ-tubulin complex (γ-TuC), and composes the microtubule organizing center (MTOC). Fission yeast Alp4 and Alp6 are homologues of two conserved γ-TuC proteins, hGCP2 and hGCP3, respectively. We isolated a novel gene, alp16 + , as a multicopy suppressor of temperature-sensitive alp6-719mutants. alp16 + encodes a 759-amino-acid protein with two conserved regions found in all other members of γ-TuC components. In addition, Alp16 contains an additional motif, which shows homology to hGCP6/Xgrip210. Gene disruption shows that alp16 + is not essential for cell viability. However, alp16 deletion displays abnormally long cytoplasmic microtubules, which curve around the cell tip. Furthermore, alp16-deleted mutants are hypersensitive to microtubule-depolymerizing drugs and synthetically lethal with either temperature-sensitive alp4-225,alp4-1891, or alp6-719 mutants. Overproduction of Alp16 is lethal, with defective phenotypes very similar to loss of Alp4 or Alp6. Alp16 localizes to the spindle pole body throughout the cell cycle and to the equatorial MTOC at postanaphase. Alp16 coimmunoprecipitates with γ-tubulin and cosediments with the γ-TuC in a large complex (>20 S). Alp16 is, however, not required for the formation of this large complex. We discuss evolutional conservation and divergence of structure and function of the γ-TuC between yeast and higher eukaryotes.


2005 ◽  
Vol 16 (6) ◽  
pp. 3040-3051 ◽  
Author(s):  
Itaru Samejima ◽  
Paula C. C. Lourenço ◽  
Hilary A. Snaith ◽  
Kenneth E. Sawin

From an insertional mutagenesis screen, we isolated a novel gene, mto2+, involved in microtubule organization in fission yeast. mto2Δ strains are viable but exhibit defects in interphase microtubule nucleation and in formation of the postanaphase microtubule array at the end of mitosis. The mto2Δ defects represent a subset of the defects displayed by cells deleted for mto1+ (also known as mod20+ and mbo1+), a centrosomin-related protein required to recruit the γ-tubulin complex to cytoplasmic microtubule-organizing centers (MTOCs). We show that mto2p colocalizes with mto1p at MTOCs throughout the cell cycle and that mto1p and mto2p coimmunoprecipitate from cytoplasmic extracts. In vitro studies suggest that mto2p binds directly to mto1p. In mto2Δ mutants, although some aspects of mto1p localization are perturbed, mto1p can still localize to spindle pole bodies and the cell division site and to “satellite” particles on interphase microtubules. In mto1Δ mutants, localization of mto2p to all of these MTOCs is strongly reduced or absent. We also find that in mto2Δ mutants, cytoplasmic forms of the γ-tubulin complex are mislocalized, and the γ-tubulin complex no longer coimmunoprecipitates with mto1p from cell extracts. These experiments establish mto2p as a major regulator of mto1p-mediated microtubule nucleation by the γ-tubulin complex.


2007 ◽  
Vol 18 (4) ◽  
pp. 1187-1202 ◽  
Author(s):  
Jeffrey K. Moore ◽  
Rita K. Miller

During mitosis in the yeast Saccharomyces cerevisiae, Kar9p directs one spindle pole body (SPB) toward the incipient daughter cell by linking the associated set of cytoplasmic microtubules (cMTs) to the polarized actin network on the bud cortex. The asymmetric localization of Kar9p to one SPB and attached cMTs is dependent on its interactions with microtubule-associated proteins and is regulated by the yeast Cdk1 Cdc28p. Two phosphorylation sites in Kar9p were previously identified. Here, we propose that the two sites are likely to govern Kar9p function through separate mechanisms, each involving a distinct cyclin. In the first mechanism, phosphorylation at serine 496 recruits Kar9p to one SPB. A phosphomimetic mutation at serine 496 bypasses the requirement of BIK1 and CLB5 in generating Kar9p asymmetry. In the second mechanism, Clb4p may target serine 197 of Kar9p for phosphorylation. This modification is required for Kar9p to direct cMTs to the bud. Two-hybrid analysis suggests that this phosphorylation may attenuate the interaction between Kar9p and the XMAP215-homologue Stu2p. We propose that phosphorylation at serine 197 regulates the release of Kar9p from Stu2p at the SPB, either to clear it from the mother-SPB or to allow it to travel to the plus end.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Judith Gunzelmann ◽  
Diana Rüthnick ◽  
Tien-chen Lin ◽  
Wanlu Zhang ◽  
Annett Neuner ◽  
...  

Stu2/XMAP215/ZYG-9/Dis1/Alp14/Msps/ch-TOG family members in association with with γ-tubulin complexes nucleate microtubules, but we know little about the interplay of these nucleation factors. Here, we show that the budding yeast Stu2 in complex with the γ-tubulin receptor Spc72 nucleates microtubules in vitro without the small γ-tubulin complex (γ-TuSC). Upon γ-TuSC addition, Stu2 facilitates Spc72–γ-TuSC interaction by binding to Spc72 and γ-TuSC. Stu2 together with Spc72–γ-TuSC increases microtubule nucleation in a process that is dependent on the TOG domains of Stu2. Importantly, these activities are also important for microtubule nucleation in vivo. Stu2 stabilizes Spc72–γ-TuSC at the minus end of cytoplasmic microtubules (cMTs) and an in vivo assay indicates that cMT nucleation requires the TOG domains of Stu2. Upon γ-tubulin depletion, we observed efficient cMT nucleation away from the spindle pole body (SPB), which was dependent on Stu2. Thus, γ-TuSC restricts cMT assembly to the SPB whereas Stu2 nucleates cMTs together with γ-TuSC and stabilizes γ-TuSC at the cMT minus end.


1995 ◽  
Vol 131 (6) ◽  
pp. 1775-1788 ◽  
Author(s):  
S G Sobel ◽  
M Snyder

A Saccharomyces cerevisiae gamma-tubulin-related gene, TUB4, has been characterized. The predicted amino acid sequence of the Tub4 protein (Tub4p) is 29-38% identical to members of the gamma-tubulin family. Indirect immunofluorescence experiments using a strain containing an epitope-tagged Tub4p indicate that Tub4p resides at the spindle pole body throughout the yeast cell cycle. Deletion of the TUB4 gene indicates that Tub4p is essential for yeast cell growth. Tub4p-depleted cells arrest during nuclear division; most arrested cells contain a large bud, replicated DNA, and a single nucleus. Immunofluorescence and nuclear staining experiments indicate that cells depleted of Tub4p contain defects in the organization of both cytoplasmic and nuclear microtubule arrays; such cells exhibit nuclear migration failure, defects in spindle formation, and/or aberrantly long cytoplasmic microtubule arrays. These data indicate that the S. cerevisiae gamma-tubulin protein is an important SPB component that organizes both cytoplasmic and nuclear microtubule arrays.


2013 ◽  
Vol 24 (18) ◽  
pp. 2894-2906 ◽  
Author(s):  
Hirohisa Masuda ◽  
Risa Mori ◽  
Masashi Yukawa ◽  
Takashi Toda

γ-Tubulin plays a universal role in microtubule nucleation from microtubule organizing centers (MTOCs) such as the animal centrosome and fungal spindle pole body (SPB). γ-Tubulin functions as a multiprotein complex called the γ-tubulin complex (γ-TuC), consisting of GCP1–6 (GCP1 is γ-tubulin). In fungi and flies, it has been shown that GCP1–3 are core components, as they are indispensable for γ-TuC complex assembly and cell division, whereas the other three GCPs are not. Recently a novel conserved component, MOZART1, was identified in humans and plants, but its precise functions remain to be determined. In this paper, we characterize the fission yeast homologue Mzt1, showing that it is essential for cell viability. Mzt1 is present in approximately equal stoichiometry with Alp4/GCP2 and localizes to all the MTOCs, including the SPB and interphase and equatorial MTOCs. Temperature-sensitive mzt1 mutants display varying degrees of compromised microtubule organization, exhibiting multiple defects during both interphase and mitosis. Mzt1 is required for γ-TuC recruitment, but not sufficient to localize to the SPB, which depends on γ-TuC integrity. Intriguingly, the core γ-TuC assembles in the absence of Mzt1. Mzt1 therefore plays a unique role within the γ-TuC components in attachment of this complex to the major MTOC site.


2000 ◽  
Vol 113 (23) ◽  
pp. 4177-4191 ◽  
Author(s):  
A.L. Pidoux ◽  
S. Uzawa ◽  
P.E. Perry ◽  
W.Z. Cande ◽  
R.C. Allshire

The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP-(α)2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force.


Sign in / Sign up

Export Citation Format

Share Document