The in Vivo and Ultrastructural Effects of Injection of Lysophosphatidyl Choline into Myelinated Peripheral Nerve Fibres of the Adult Mouse

1971 ◽  
Vol 9 (3) ◽  
pp. 769-789
Author(s):  
SUSAN M. HALL ◽  
N. A. GREGSON

The action of phospholipase A and lysophosphatidyl choline (LPC) on mature, myelinated peripheral nerve fibres has been studied in vivo and electron microscopically, following sub-perineurial injection of these substances. Within 30 min, demyelination was observed in vivo along cylindrico-conical segments, spreading from Schmidt-Lanterman incisures and nodes of Ranvier. By 96 h, all traces of the myelin sheath had disappeared from the area of the lesion, and had been replaced by debris-laden cells lying in chains parallel to one another and the long axis of the fibre. During the next few weeks these cells gradually disappeared, and numerous finely myelinated axons, running between, and in continuity with, the normal fibres proximal and distal to the lesion were observed. If lower concentrations of LPC were used the number of fibres involved decreased, although the demyelinative changes followed the same time-course. Ultrastructurally, demyelination involved progressive disruption and removal of the lamellar sheath, observed initially as a splitting of the intraperiod line within 30 min. Subsequent breakdown resulted in the formation of strands of 4-6 nm repeat material which was further degraded through quintuple- and triple-layered lamellar units to foam-like systems of disorganized lamellar fragments. The Schwann cell and axons appeared to be undamaged by phospholipase A and LPC, and retained their normal impermeability to exogenous ferritin. The significance of the demyelinating capacity of LPC in vivo is discussed in terms of its known action on myelin in vitro, the rapidity and apparent specificity of its action demonstrated in this study, and its potential involvement in pathological demyelination.

1971 ◽  
Vol 8 (2) ◽  
pp. 541-555
Author(s):  
SUSAN M. HALL ◽  
P. L. WILLIAMS

Two electron-dense tracers, ferritin and lanthanum, have been administered to peripheral nerve fibres, and their uptake has been studied ultrastructurally. It was found that the perineurium was an effective barrier to ferritin in vivo, and the tracer was subsequently injected sub-perineurially. Ferritin uptake over a 120-min period was confined to occasional phagocytic vesicles in perineurial and Schwann cells, and to the nodal gap substance and paranodal periaxonal space. No uptake was observed in the myelin sheath, incisural intraperiod line gap, or in the axoplasm. Soaking fibres in ferritin in vitro resulted in a more generalized cytoplasmic and axoplasmic uptake, although the myelin sheath and Schmidt-Lanterman incisures remained devoid of the tracer. Lanthanum nitrate, included in the fixative solution, delineated the patent incisural intraperiod line gap, and outlined the external surface of the terminal loops of nodal Schwann cell cytoplasm, and the paranodal Schwann cell-axolemmal junction. Unlike ferritin, La3+ penetrated the myelin sheath, being usually confined to the intraperiod line region of the outer lamellae, where it was associated with a widening of the lamellar unit, and an apparent splitting of the intraperiod line. The results are discussed with regard to distribution of extracellular space in peripheral nerve fibres.


1973 ◽  
Vol 58 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Frank A. Rawlins

A time-sequence study of the incorporation and distribution of cholesterol in peripheral nerve myelin was carried out by electron microscope autoradiography. [1,2-3H]Cholesterol was injected into 10-day old mice and the sciatic nerves were dissected out at 10, 20, 40, 60, 90, 120, and 180 min after the injection. 20 min after injection the higher densities of grains due to the presence of [3H]cholesterol were confined to the outer and inner edges of the myelin sheath. Practically no cholesterol was detected in the midzone of the myelin sheath. 1 ½ h after injection, cholesterol showed a wider distribution within the myelin sheath, the higher densities of grains occurring over the two peripheral myelin bands, each approximately 3,100 Å wide. Cholesterol was also present in the center of the myelin sheath but to a considerably lesser extent. 3 h after injection cholesterol appeared homogeneously distributed within the myelin sheath. Schwann cell and axon compartments were also labeled at each time interval studied beginning 20 min postinjection. These observations indicate that preformed cholesterol enters myelin first and almost simultaneously through the inner and outer edges of the sheath; only after 90 min does the density of labeled cholesterol in the central zone of myelin reach the same density as that in the outer and inner zones. These findings suggest that cholesterol used by the nerve fibers in the formation and maintenance of the myelin sheath enters the lamellae from the Schwann cell cytoplasm and from the axon. The possibility of a bidirectional movement of molecules, i.e. from the Schwann cell to the axon and from the axon to the Schwann cell through the myelin sheath, is noted. The results are discussed in the light of recent observations on the exchange, reutilization, and transaxonal movement of cholesterol.


2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Paulina Sierpinski ◽  
Jeffrey Garrett ◽  
Jianjun Ma ◽  
Peter Apel ◽  
Tom Smith ◽  
...  

1958 ◽  
Vol s3-99 (47) ◽  
pp. 333-340
Author(s):  
ARTHUR HESS

Sections of the peripheral nerve-trunks of the metathoracic leg of the cockroach (Periplaneta americana) were studied with the electron microscope. Paraffin sections were also prepared and stained. Protargol succeeds in staining the nerve-fibres. Osmium tetroxide, a modified Weigert procedure, and Luxol fast blue stain the myelin sheaths, as does mercuric bromphenol blue, a protein stain. The axoplasm is relatively free of formed elements; it contains mitochondria. The myelin sheath, when present on the largest and also some smaller fibres, consists of about two or three loose over lapping processes of Schwann cells, covered by their plasma membranes, enclosing lipid-like droplets and having a beaded appearance. Between the nerve-fibres in the nerve-trunk is Schwann-cell cytoplasm, which arises from Schwann cells that surround the whole nerve-trunk. The same fold of Schwann-cell membrane may enter into the formation of the myelin sheath around more than one nerve-fibre. Several small non-myelinated fibres, which may be as small as 0.3 µ in diameter or less, may be enclosed in the same fold of Schwann-cell membrane. Outside of the Schwann-cell layer and surrounding the nerve-trunk is a thin layer of connective tissue, which does not send trabeculae into the interior of the nerve. Tracheae and tracheoles accompany the nerve but are not included within the sheaths surrounding a nerve-trunk, even near the termination of the nerve-fibres in muscle. The structure of the cockroach peripheral nerve is compared with that described by previous investigators, with that of other insects, and with invertebrate and vertebrate nerve.


1973 ◽  
Vol 58 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Peter S. Spencer ◽  
Edith R. Peterson ◽  
Ricardo Madrid A. ◽  
Cedric S. Raine

A functionally coupled organotypic complex of cultured dorsal root ganglia, spinal cord peripheral nerve, and muscle has been employed in an experimental approach to the investigation of the neurotoxic effects of thallium. Selected cultures, grown for up to 12 wk in vitro, were exposed to thallous salts for periods ranging up to 4 days. Cytopathic effects were first detected after 2 h of exposure with the appearance of considerably enlarged mitochondria in axons of peripheral nerve fibers. With time, the matrix space of these mitochondria became progressively swollen, transforming the organelle into an axonal vacuole bounded by the original outer mitochondrial membrane. Coalescence of adjacent axonal vacuoles produced massive internal axon compartments, the membranes of which were shown by electron microprobe mass spectrometry to have an affinity for thallium. Other axoplasmic components were displaced within a distended but intact axolemma. The resultant fiber swelling caused myelin retraction from nodes of Ranvier but no degeneration. Impulses could still propagate along the nerve fibers throughout the time course of the experiment. Comparable, but less severe changes were seen in dorsal root ganglion neurons and in central nerve fibers. Other cell types showed no mitochondrial change. It is uncertain how these findings relate to the neurotoxic effects of thallium in vivo, but a sensitivity of the nerve cell and especially its axon to thallous salts is indicated.


The fine structure and morphological organization of non-myelinated nerve fibres were studied by ultra-thin sectioning and electron microscopy in peripheral nerves, autonomic nerves and dorsal roots. Several non-myelinated fibres share the cytoplasm of a Schwann cell. The Schwann cells of non-myelinated fibres form a syncytium. The fibres are incompletely sur­rounded by Schwann cell cytoplasm and are suspended in the cytoplasm by mesaxons formed by the plasma membranes of the Schwann cell. The various relationships of mesaxon and nerve fibre are described. Non-myelinated fibres which do not share a Schwann cell are seen very frequently in the sciatic nerve of a new-born mouse but become less common as myelination proceeds and are rare in adults. It is therefore suggested that in developing peripheral nerves, the non­ myelinated fibres that are destined to myelinate are not organized into groups within a single Schwann cell, even before their myelin sheath has appeared; they are, at least for the ages examined here, individuals in relation to a surrounding individual Schwann cell. It is also suggested that the non-myelinated fibres that will never acquire a myelin sheath are organized in a developing peripheral nerve in the same manner as in the adult nerve—several fibres sharing a single Schwann cell that is part of a syncytial system of Schwann cells. Thus, in a developing peripheral nerve, it appears that two types of non-myelinated fibres are present—one destined to myelinate and lying alone in its own Schwann cell and the other, destined to remain unmyelinated and sharing, along with other non-myelinated fibres of the same type, a Schwann cell. The significance of these observations is discussed in relation to the development of nerve fibres and possible physiological importance.


1972 ◽  
Vol 10 (2) ◽  
pp. 535-546
Author(s):  
SUSAN M. HALL

The action of lysophosphatidyl choline, LPC, on myelinated fibres in the dorsal white matter of the spinal cord of the adult mouse has been studied electron microscopically, and compared with the recently described activity of LPC in the peripheral nerve fibre. Control injections of sterile isotonic saline and injections of LPC both produced oedematous zones in the white matter; within these zones, many fibres exhibited the characteristic changes of Wallerian degeneration. After injection of LPC, however, an area of demyelination was observed, extending within and beyond the Wallerian degeneration. Ultrastructurally, demyelination involved progressive disruption of the previously-compact sheath, observed initially as a splitting of the intraperiod line within 30 min. Subsequent breakdown was-indicated by the appearance of strands of 4-6 nm repeat lamellar material, itself further degraded through quintuple- and triple-layered lamellar units to disorganized membranous networks around undamaged axons. The significance of the demyelinating activity of LPC is discussed in terms of its known action in in vitro systems of isolated central nervous tissue, and its action in vivo in the peripheral nervous system.


1994 ◽  
Vol 52 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Laurence W. Haynes ◽  
James A. Rushton ◽  
Matthew F. Perrins ◽  
Jason K. Dyer ◽  
Rosemary Jones ◽  
...  

1954 ◽  
Vol 37 (4) ◽  
pp. 505-538 ◽  
Author(s):  
Donald O. Rudin ◽  
George Eisenman

Despite the trauma of dissection and special metabolic requirements, the physiological properties of funiculi of the mammalian spinal cord can be studied in vitro. They are adequately oxygenated by diffusion at 0.88 atm. pO2 and remain in a functionally normal state for over 12 hours. The internal consistency of several kinds of data presented in this and the foregoing papers (5, 38) serves to characterize certain properties of central myelinated axons whether excised or in situ. (1) Spinal tracts support a large spike potential in vitro whose form, duration, and velocity are comparable to those of alpha fibers in vitro and spinal tracts in vivo. (2) Properties consistent with a large L fraction are found in central axons whether excised or in situ. (3) Following conduction there has been identified post-spike supernormality with exponential time course (7.5 msecs. half-time) which is the result of activity intrinsic to parent fibers of dorsal columns. The supernormality is similar in form and magnitude both in excised and intact funiculi. (4) In excised funiculi the action potential of parent axons includes a large negative after-potential whose form and duration correspond satisfactorily with this supernormality. This potential appears not to result from activity arising in broken collaterals. (5) Central axons, excised or intact, fire spontaneously in the presence of citrate ion, and when synchronized by stimulation develop periodic oscillations at about 400 C.P.S. but show no such behavior in the presence of excess potassium ion. Certain characteristics peculiar to central axons indicate that they occupy an extreme position in the spectrum of properties encountered in conducting tissues. Dorsal column myelinated axons differ from their peripheral counterparts, even though they are parts of the same cell, in the following ways. The maintenance of the column spike potential is more critically dependent on CO2 and the entire tissue mass has a higher oxygen consumption. The negative after-potential is much larger and the positive after-potential, non-existent following a single volley, is more difficult to develop by repetitive stimulation. Unlike peripheral nerve, central axons are not incited to spontaneous activity by manipulation of certain constituents normally present in their environment. However, when induced by the application of citrate the resulting rhythmic behavior has twice the frequency of that in peripheral nerve. In general, the recovery process in central axons is more invariant than that in peripheral axons when they are subjected to similar changes in their artificial environments.


1991 ◽  
Vol 66 (05) ◽  
pp. 609-613 ◽  
Author(s):  
I R MacGregor ◽  
J M Ferguson ◽  
L F McLaughlin ◽  
T Burnouf ◽  
C V Prowse

SummaryA non-stasis canine model of thrombogenicity has been used to evaluate batches of high purity factor IX concentrates from 4 manufacturers and a conventional prothrombin complex concentrate (PCC). Platelets, activated partial thromboplastin time (APTT), fibrinogen, fibrin(ogen) degradation products and fibrinopeptide A (FPA) were monitored before and after infusion of concentrate. Changes in FPA were found to be the most sensitive and reproducible indicator of thrombogenicity after infusion of batches of the PCC at doses of between 60 and 180 IU/kg, with a dose related delayed increase in FPA occurring. Total FPA generated after 100-120 IU/kg of 3 batches of PCC over the 3 h time course was 9-12 times that generated after albumin infusion. In contrast the amounts of FPA generated after 200 IU/kg of the 4 high purity factor IX products were in all cases similar to albumin infusion. It was noted that some batches of high purity concentrates had short NAPTTs indicating that current in vitro tests for potential thrombogenicity may be misleading in predicting the effects of these concentrates in vivo.


Sign in / Sign up

Export Citation Format

Share Document