scholarly journals The fine structure produced in cells by primary fixatives 2. Potassium dichromate

1965 ◽  
Vol s3-106 (73) ◽  
pp. 15-21
Author(s):  
JOHN R. BAKER

The exocrine cells of the mouse pancreas were fixed in potassium dichromate solution, embedded in araldite or other suitable medium, and examined by electron microscopy. Almost every part of these cells is seriously distorted or destroyed by this fixative. The ergastoplasm is generally unrecognizable, the mitochondria and zymogen granules are seldom visible, and no sign of the plasma membrane, microvilli, or Golgi apparatus is seen. The contents of the nucleus are profoundly rearranged. It is seen to contain a large, dark, irregularly shaped, finely granular object; the evidence suggests that this consists of coagulated histone. The sole constituent of the cell that is well fixed is the inner nuclear membrane. The destructive properties of potassium dichromate are much mitigated when it is mixed in suitable proportions with osmium tetroxide or formaldehyde.

1963 ◽  
Vol s3-104 (65) ◽  
pp. 101-106
Author(s):  
JOHN R. BAKER ◽  
BARBARA M. LUKE

The exocrine cells of the mouse pancreas were fixed in mercuric chloride solution, embedded in plexigum, and examined by electron microscopy. The cytoplasm was found to be coagulated as a continuous substance containing innumerable subspherical cavities, mostly between 40 and 200 mµ in diameter and separate from one another. The zymogen granules were preserved, but no trace remained of mitochondria or Golgi apparatus. The nuclear sap was coagulated as a coarse network with thickenings at the nodes. Lumps of electron-dense material (? DNA) were present at the periphery of the nucleus and round the nucleolus. The proteins of the cell appear to have been fixed by mercuric chloride, but the membranous constituents, which rely for their form on a phospholipid component, are not clearly recognizable. The lipids have presumably been lost during dehydration and embedding.


1963 ◽  
Vol 18 (3) ◽  
pp. 651-662 ◽  
Author(s):  
Edith Krugelis MacRae

Pharyngeal muscle of the planarian Dugesia tigrina was studied by electron microscopy after osmium tetroxide fixation. The muscle cell was observed to contain one myofibril or bundle of myofilaments parallel to its longitudinal axis. The myofilaments were of two types, different in size and distribution. No Z lines or myofilament organization into cross or helical striations were seen. Dense bodies were seen as projections from an invagination of the plasma membrane and as dense lines parallel to the myofilaments. The muscle cells are surrounded by a plasma membrane which is structurally associated with dense body projections, with vesicles and cisternae of sarcoplasmic reticulum, and with synaptic nerve endings. The cell has sarcoplasmic projections perpendicular to its long axis; these projections are seen to contain the nucleus or mitochondria and granules. Mitochondria and granules are also seen in a sarcoplasm rim around the fibril. The dense bodies may serve as attachment for thin myofilaments and function in transmission of stimuli from plasma membrane to the interior of the fibril.


1974 ◽  
Vol 14 (3) ◽  
pp. 633-655
Author(s):  
EVA KONRAD HAWKINS

The fine structure of the Golgi apparatus during development of tetrasporangia of Calli-thamnion roseum is described. Dictyosomes and associated vesicles of 4 developmental stages of sporangia are examined. The wall of sporangia exhibits a heretofore unseen cuticle in red algae. Development of the spore wall and a new plasma membrane around spores occurs through fusion of adjacent Golgi vesicles along the periphery of cells. Observations are discussed in relation to wall formation and expansion of tetrads and in comparison with other work on growth and differentiation of the Golgi apparatus.


1973 ◽  
Vol 19 (3) ◽  
pp. 309-313 ◽  
Author(s):  
Judith F. M. Hoeniger ◽  
H.-D. Tauschel ◽  
J. L. Stokes

Sphaerotilus natans developed sheathed filaments in stationary liquid cultures and motile swarm cells in shaken ones. Electron microscopy of negatively stained preparations and thin sections showed that the sheath consists of fibrils. When the filaments were grown in broth with glucose added, the sheath was much thicker and the cells were packed with granules of poly-β-hydroxybutyrate.Swarm cells possess a subpolar tuft of 10 to 30 flagella and a polar organelle which is usually inserted in a lateral position and believed to be ribbon-shaped. The polar organelle consists of an inner layer joined by spokes to an accentuated plasma membrane. The flagellar hook terminates in a basal disk, consisting of two rings, which is connected by a central rod to a second basal disk.


1990 ◽  
Vol 68 (7) ◽  
pp. 1454-1467 ◽  
Author(s):  
K. M. Fry ◽  
S. B. McIver

Light and electron microscopy were used to observe development of the lateral palatal brush in Aedes aegypti (L.) larvae. Development was sampled at 4-h intervals from second- to third-instar ecdyses. Immediately after second-instar ecdysis, the epidermis apolyses from newly deposited cuticle in the lateral palatal pennicular area to form an extensive extracellular cavity into which the fourth-instar lateral palatal brush filaments grow as cytoplasmic extensions. On reaching their final length, the filaments deposit cuticulin, inner epicuticle, and procuticle sequentially on their outer surfaces. The lateral palatal crossbars, on which the lateral palatal brush filaments insert, form after filament development is complete. At the beginning of development, the organelles involved in plasma membrane and cuticle production are located at the base and middle of the cells. As the filament rudiments grow, most rough endoplasmic reticulum, mitochondria, and Golgi apparatus move to the apex of the epidermal cells and into the filament rudiments. After formation of the lateral palatal brush filaments and lateral palatal crossbars, extensive organelle breakdown occurs. Lateral palatal brush formation is unusual in that no digestion and resorption of old endocuticle occurs prior to deposition of new cuticle. No mucopolysaccharide secretion by the lateral palatal brush epidermis was observed, nor were muscle fibres observed to attach to the lateral palatal crossbars, as has been suggested by other workers.


1965 ◽  
Vol 25 (2) ◽  
pp. 1-7 ◽  
Author(s):  
John Mcd. Tormey

The accumulation of ferritin by the ciliary epithelium of the adult albino rabbit has been studied by electron microscopy. The experiments have been carried out under in vitro conditions, such that any uptake observed should be the result of passive diffusion of the tracerparticles rather than the product of active metabolic processes. The cells were fixed in osmium tetroxide and embedded in Araldite. Ferritin was found localized in three areas: in rows of apparent vesicles, free in the cytoplasmic matrix, and in the basement membrane. Some of the conclusions reached are as follows. The appearance of tracer in rows of vesicles is not in itself an adequate demonstration of pinocytosis. The permeability of the plasma membrane is drastically increased by osmium tetroxide fixation, so that tracer particles are free to diffuse across the membrane and wander through the cytoplasm. These results indicate the serious danger of being misled by artifacts when colloidal particles are used as tracers.


1962 ◽  
Vol 12 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Allen C. Enders

Corpora lutea from the period of delayed implantation and from early postimplantation stages of the armadillo, mink, and rat were fixed in buffered osmium tetroxide-sucrose or potassium permanganate. After rapid dehydration, the portions of the corpora lutea were embedded in either methacrylate or epoxy resin. Examination of the lutein cells by electron microscopy revealed the presence, in the better preserved material, of an extensive development of tubular agranular endoplasmic reticulum. Although the membranes of the endoplasmic reticulum are the most striking feature of the lutein cells of both stages of the three animals examined, very numerous large mitochondria with cristae that exhibit a variety of forms tending toward villiform, and protrusions and foldings of the lutein cell margins on the pericapillary space are also characteristic of these cells. Certain minor differences in the lutein cells of the species examined are also noted. No indications of conversion of mitochondria into lipid, of accumulation of lipid in the Golgi area, or of the protrusion of lutein cells into spaces between the endothelial cells, as suggested by other authors, were noted in these preparations. Some of the difficulties inherent in the visualization of the secretory activity of cells producing steroid hormones are briefly discussed.


1965 ◽  
Vol 26 (2) ◽  
pp. 523-537 ◽  
Author(s):  
G. Benjamin Bouck

The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells.


Author(s):  
Robert Giaquinta ◽  
M. A. Hayat

The ultrastructural changes that occur in the intestinal absorptive cells during amphibian metamorphosis have been reported (Bonneville, 1963). These changes accompany a change in diet (from an herbivorous to a carnivorous state) during metamorphosis. Little information is available, however, on the ultrastructural changes in the absorptive cells of amphibians in relation to the state of feeding. This report describes the differences in the fine structure of these cells in the tadpole stage of Rana pipiens during periods of food absorption and fasting.Rana pipiens at tadpole stages were fed an herbivorous diet, and after a period of 48 hr, the animal was dissected and segments of the small intestine were collected for electron microscopy. A second group of tadpoles was fasted for 7 days, and segments of the small intestine were collected. The tissue specimens were immersed in phosphate-buffered glutaraldehyde (3%) for 1 hr at 4C and postfixed with phosphate-buffered osmium tetroxide (2%) for 1 hr at 4C.


1972 ◽  
Vol 18 (12) ◽  
pp. 1915-1922 ◽  
Author(s):  
W. E. McKeen

Somatic nuclear division in Erysiphe graminis hordei was studied by light and electron microscopy after various fixation and staining procedures. Electron microscopy studies of alcohol – acetic acid fixed material aided in providing an understanding of nuclear division and showing the gross alterations which occurred. Light microscopy indicated that a central body was always present at a specific site on the nuclear membrane in the interphase nucleus and was connected to chromatic spherical bodies. Microtubules were preserved when a short glutaraldehyde – osmium tetroxide fixation was used. Some microtubules extend from plaque to plaque while others terminate in kinetochores. A microtubular spindle, oblique to the nuclear and mildew-cells axes formed within the nuclear membrane. Typical prophases, metaphases, anaphases, and telophases were observed. Then one set of daughter chromatids bypassed the nucleolus which persisted intranuclearly until the daughter nuclei reached their destination, and the other set of daughter chromatids moved to midpoint in the other daughter cell. A narrow corridor, which connected daughter nuclei for some time, was filled mainly with microtubules and probably was the filament which was observed in the nucleus by light microscopy during nuclear division. At least six chromosomes were present in each nucleus.


Sign in / Sign up

Export Citation Format

Share Document