scholarly journals Nerve Net Pacemakers and Phases of Behaviour in the Sea Anemone Calliactis Parasitica

1983 ◽  
Vol 104 (1) ◽  
pp. 231-246
Author(s):  
IAN D. McFARLANE

Bursts of through-conducting nerve net (TCNN) pulses, 20–45 min apart, were recorded from Calliactis attached to shells. Within 15–25 min of the anemones being detached the TCNN bursts suddenly became more frequent (only 4–11 min apart). Such bursts continued for several hours if re-attachment was prevented. In an attached anemone simultaneous electrical stimulation of the TCNN and ectodermal slow system (SS1) with 20–30 shocks at one every 5 s also led to more frequent TCNN bursts, whether or not detachment took place. If, however, the anemone remained attached, the intervals between bursts returned to the normal resting duration after about 90 min. In all cases the decay of the 4–11 min interval TCNN bursts involved a reduction in pulse number, not an increase in burst interval. Partial activation of the TCNN pacemakers followed stimulation of the SS1 alone. It is suggested that in sea anemones the change from one behavioural phase to another is associated with a change in the patterned output of nerve net pacemakers.

1975 ◽  
Vol 63 (3) ◽  
pp. 615-626
Author(s):  
I. D. McFarlane

1. Activity in all three known conducting systems (the nerve net, SS1, and SS2) may accompany feeding in Calliactis. The most marked response is an increase in pulse frequency in the SS2 (the endodermal slow conducting system) during mouth opening and pharynx protrusion. 2. Electrical stimulation of the SS2 at a frequency of one shock every 5 s elicits mouth opening and pharynx protrusion in the absence of food. 3. A rise in SS2 pulse frequency is also evoked by food extracts, some amino acids, and in particular by the tripeptide reduced glutathione, which produces a response at a concentration of 10(−5) M. 4. Although the SS2 is an endodermal system, the receptors involved in the response to food appear to be ectodermal. 5. The epithelium that lines the pharynx conducts SS1 pulses, but there is some evidence for polarization of conduction.


1971 ◽  
Vol 55 (3) ◽  
pp. 611-640
Author(s):  
ELAINE A. ROBSON

1. In Gonactinia well-developed ectodermal muscle and nerve-net extend over the column and crown and play an important part in the anemone's behaviour. 2. Common sequences of behaviour are described. Feeding is a series of reflex contractions of different muscles by means of which plankton is caught and swallowed. Walking, in the form of brief looping steps, differs markedly in that it continues after interruptions. Anemones also swim with rapid tentacle strokes after contact with certain nudibranch molluscs, strong mechanical disturbance or electrical stimulation. 3. Swimming is attributed to temporary excitation of a diffuse ectodermal pacemaker possibly situated in the upper column. 4. From the results of electrical and mechanical stimulation it is concluded that the endodermal neuromuscular system resembles that of other anemones but that the properties of the ectodermal neuromuscular system require a new explanation. The size and spread of responses to electric shocks vary with intensity, latency is variable and there is a tendency to after-discharge. There is precise radial localization, for example touching a tentacle or the column causes it to bend towards or away from the stimulus. 5. A model to explain these and other features includes multipolar nerve cells closely linked to the nerve-net which would act as intermediate motor units, causing local contraction of the ectodermal muscle. This scheme can be applied to other swimming anemones but there is no evidence that it holds for sea anemones generally.


1987 ◽  
Vol 133 (1) ◽  
pp. 157-168 ◽  
Author(s):  
I. D. McFARLANE ◽  
D. GRAFF ◽  
C. J.P. GRIMMELIKHUIJZEN

In the sea anemone Calliactis parasitica endodermal application of the anthozoan neuropeptide Antho-RFamide (<Glu-Gly-Arg-Phe-amide), at a concentration of 10−6 or 10−7moll−1, caused a long-lasting increase in tone, contraction frequency and contraction amplitude in several slow muscle groups but had no effect on contractions in fast muscles. The effects were investigated further in isolated muscle preparations. Ectodermal application to whole animals had no effect on muscle contractions. Both ectodermal and endodermal application, at 10−7moll−1, raised electrical activity in an ectodermal conduction system, the SSI, but had no effect on an endodermal conduction system, the SS2. Electrical activity in the SS2 was increased by application at 10−6moll−1 to the endoderm but not to the ectoderm. The peptide had no effect on the through-conducting nerve net. It is concluded that contractions evoked by Antho-RFamide may be partly due to neuronal activity, but probably also involve direct excitation of the muscles. The diverse excitatory actions of Antho-RFamide suggest that it may be a neurotransmitter or neuromodulator in sea anemones.


1976 ◽  
Vol 64 (2) ◽  
pp. 431-445
Author(s):  
I. D. McFarlane

1. Pulses in two slow conducting systems, the ectodermal SS 1 and the endodermal SS 2, were recorded during shell-climbing behaviour. The mean pulse interval of SS 1 pulses was 7–4 s and that of SS 2 pulses was 6-4 s. Activity in both systems may arise as a sensory response of tentacles to shell contact, but the SS 1 and SS 2 may not share the same receptors. 2. Electrical stimulation of the SS 1 and SS 2 together, at a frequency of 1 shock every 5 s, elicits shell-climbing behaviour in the absence of a shell. 3. Low-frequency nerve-net activity (about 1 pulse every 15 s) accompanies column bending during both normal and electrically elicited responses. This activity probably arises as a result of column bending and is not due to a sensory response to the shell.


1984 ◽  
Vol 108 (1) ◽  
pp. 137-149
Author(s):  
IAN D. MCFARLANE

1. Single shocks to the column sometimes evoke tentacle contractions, ranging from slight movement of a few scattered tentacles to rapid bending or shortening of all the tentacles. Some individuals are more responsive than others. Complex bursts of electrical activity follow single shocks, but only in tentacles that contract. 2. These single shocks excite pulses in two conducting systems - the through-conducting nerve net (TCNN) and the ectodermal slow conduction system (SSI). When a single shock evokes contractions and bursts of electrical activity, these usually follow the SSI pulse, rarely the TCNN pulse. Stimulation of the SSI alone causes tentacle contraction in responsive anemones. 3. Fast tentacle contractions always follow the second of two closelyspaced TCNN pulses: the TCNN shows facilitation (Pantin, 1935a). An SSI pulse, however, does not facilitate subsequent pulses in either the SSI or TCNN. 4. There are two pathways for activation of tentacle contractions. The TCNN pathway is mechano-sensitive and normally requires facilitation. The SSI pathway is mechano- and chemosensitive, only requires a single SSI pulse to evoke contraction, but is very labile. It is proposed that the TCNN and the SSI do not excite the ectodermal muscles directly, but via a multipolar nerve net.


1974 ◽  
Vol 60 (2) ◽  
pp. 397-422
Author(s):  
I. D. MCFARLANE

1. Bursts of nerve-net activity are always followed by a contraction cycle involving parietal and circular muscle contractions in isolated preparations of Calliactis parasitica. Both muscle groups can, however, also contract in the absence of nerve-net activity. These contractions, termed inherent, seem to follow periods of reduced activity in the endodermal slow conduction system (SS2). 2. Electrical stimulation of the SS2 inhibits inherent contractions of parietal and circular muscle preparations. Electrical stimulation of the nerve net excites parietal muscles but seems to have both excitatory and inhibitory effects on circular muscles. 3. A model for control of parietal and circular muscle contractions proposes that both the nerve net and the SS2 are responsible for directing the inherent muscular activity into the observed contraction cycle. It is suggested that when the action of these antagonistic muscles is strongly opposed the SS2 pulse frequency rises, resulting in inhibition of further muscular activity.


1970 ◽  
Vol 53 (1) ◽  
pp. 211-220
Author(s):  
I. D. McFARLANE

1. Dissolved food substances elicit preparatory feeding behaviour in the sea anemone Tealia felina. This behaviour takes the form of expansion of the oral disk and lowering of the margin of the disk. Food may also cause mouth opening and pharynx protrusion. This pre-feeding response may increase the chance of food capture. 2. The expansion and lowering of the oral disk can also be elicited by electrical stimulation of a slow conduction system, the SS1, thought to be located in the ectoderm. 3. SS1 activity is seen when the anemone is exposed to dissolved food substances. 4. It is concluded that preparatory feeding behaviour in Tealia is mediated in part by the SS1.


1969 ◽  
Vol 51 (2) ◽  
pp. 387-396
Author(s):  
I. D. MCFARLANE

1. Electrical activity has been recorded from the sphincter region of Calliactis parasitica during the behavioural sequence in which the anemone detaches from the substrate and attaches to a Buccinum shell. The ectodermal slow-conduction system (SS1) fires repetitively, the majority of observed pulses occurring in the period prior to detachment (a typical example is 25 SS1pulses at an average frequency of 1 pulse/7 sec.). Shell-tentacle contact is essential for stimulation of SS1activity. 2. Mechanical stimulation of the column excites the SS1, and 30 stimuli at a frequency of about one shock/5 sec. give pedal disk detachment. 3. Electrical stimulation of the ectoderm excites the SS1and about 30 stimuli at frequencies between one shock/3 sec. and one shock/9 sec. produce detachment. Detachment and the SS1 have an identical stimulus threshold. It is concluded that detachment is co-ordinated by the SS1.


1974 ◽  
Vol 61 (1) ◽  
pp. 129-143
Author(s):  
I. D. MCFARLANE

1. The rhythm of spontaneous nerve-net pulses is reset by intercalated evoked nerve-net pulses. 2. The origin of spontaneous nerve-net pulses can shift during a burst. There seem to be many potential pacemakers, widely distributed throughout the body, but apparently absent from the tentacles. 3. If a spontaneous or evoked pulse in the endodermal slow conduction system (SS 2) occurs during a burst, the nerve-net pulse intervals are increased during a 15-30 sec period following the SS 2 pulse. Additional SS 2 pulses cause a further increase in pulse intervals. 4. Nerve-net bursts are followed by a sequence of muscular contractions. The size of the contraction shown by any muscle group depends on nerve-net pulse number and frequency, the optimum frequency being different for different muscles. It is suggested that the SS 2 pulse action on nerve-net pulse frequency can significantly alter the behavioural output of nerve-net bursts. The SS 2 activity may represent sensory feedback on to the nervous pacemakers.


1976 ◽  
Vol 64 (2) ◽  
pp. 419-429
Author(s):  
I. D. Lawn

1. Electrical activity has been recorded from Stomphia coccinea during the behavioural sequence in which the detached anemone settles on to a Modiolus shell. 2. When a responsive tentacle contacts the shell, a short, complex burst of pulses is elicited. These remain confined to the region of contact. The endodermal slow-conduction system (SS2) then begins to fire repetitively (a typical example is 16 SS2 pulses at a mean interpulse interval of 5 s) until the pedal disc begins to inflate. Shell-tentacle contact is essential for stimulation of SS2 activity. 3. The complete response, apart from local bending of the column, may be reproduced by electrical stimulation of the SS2 alone. As few as 10 stimuli at frequencies between 1 shock/s and 1 shock/10 s are required to elicit the response.


Sign in / Sign up

Export Citation Format

Share Document