scholarly journals Tissue intracellular acid-base status and the fate of lactate after exhaustive exercise in the rainbow trout

1986 ◽  
Vol 123 (1) ◽  
pp. 123-144 ◽  
Author(s):  
C. L. Milligan ◽  
C. M. Wood

Exhaustive ‘burst-type’ exercise in the rainbow trout resulted in a severe acidosis in the white muscle, with pHi dropping from 7.21 to a low of 6.62, as measured by DMO distribution. An accumulation of lactate and pyruvate, depletions of glycogen, ATP and CP stores, and a fluid shift from the extracellular fluid to the intracellular fluid of white muscle were associated with the acidosis. The proton load was in excess of the lactate load by an amount equivalent to the drop in ATP, suggesting that there was an uncoupling of ATP hydrolysis and glycolysis. Initially, lactate was cleared more quickly than protons from the muscle, a difference that was reflected in the blood. It is suggested that during the early period of recovery (0–4 h), the bulk of the lactate was oxidized in situ, restoring pHi to a point compatible with glyconeogenesis. At that time, lactate and H+ were used as substrates for in situ glyconeogenesis, which was complete by 24 h. During this time, lactate and H+ disappearance could account for about 75% of the glycogen resynthesized. The liver and heart showed an accumulation of lactate, and it is postulated that this occurred as a result of uptake from the blood. Associated with the lactate load in these tissues was a metabolic alkalosis. Except for an apparent acidosis immediately after exercise, the acid-base status of the brain was not appreciably affected. Despite the extracellular acidosis, red cell pHi remained nearly constant.

1991 ◽  
Vol 156 (1) ◽  
pp. 153-171 ◽  
Author(s):  
YONG TANG ◽  
ROBERT G. BOUTILIER

The intracellular acid-base status of white muscle of freshwater (FW) and seawater (SW) -adapted rainbow trout was examined before and after exhaustive exercise. Exhaustive exercise resulted in a pronounced intracellular acidosis with a greater pH drop in SW (0.82 pH units) than in FW (0.66 pH units) trout; this was accompanied by a marked rise in intracellular lactate levels, with more pronounced increases occurring in SW (54.4 mmoll−1) than in FW (45.7 mmoll−1) trout. Despite the more severe acidosis, recovery was faster in the SW animals, as indicated by a more rapid clearance of metabolic H+ and lactate loads. Compartmental analysis of the distribution of metabolic H+ and lactate loads showed that the more rapid recovery of pH in SW trout could be due to (1) their greater facility for excreting H+ equivalents to the environmental water [e.g. 15.5 % (SW) vs 5.0 % (FW) of the initial H+ load was stored in external water at 250 min post-exercise] and, to a greater extent, (2) the more rapid removal of H+, facilitated via lactate metabolism in situ (white muscle) and/or the Cori cycle (e.g. heart, liver). The slower pH recovery in FW trout may also be due in part to greater production of an ‘unmeasured acid’ [maximum approx. 8.5 mmol kg−1 fish (FW) vs approx. 6 mmol kg−1 fish (SW) at 70–130 min post-exercise] during the recovery period. Furthermore, the analysis revealed that H+-consuming metabolism is quantitatively the most important mechanism for the correction of an endogenously originating acidosis, and that extracellular pH normalization gains priority over intracellular pH regulation during recovery of acid-base status following exhaustive exercise.


1986 ◽  
Vol 123 (1) ◽  
pp. 93-121 ◽  
Author(s):  
C. L. Milligan ◽  
C. M. Wood

Exhaustive exercise induced a severe short-lived (0–1 h) respiratory, and longer-lived (0–4 h) metabolic, acidosis in the extracellular fluid of the rainbow trout. Blood ‘lactate’ load exceeded blood ‘metabolic acid’ load from 1–12 h after exercise. Over-compensation occurred, so that by 8–12 h, metabolic alkalosis prevailed, but by 24 h, resting acid-base status had been restored. Acid-base changes were similar, and lactate levels identical, in arterial and venous blood. However, at rest venous RBC pHi was significantly higher than arterial (7.42 versus 7.31). After exercise, arterial RBC pHi remained constant, whereas venous RBC pHi fell significantly (to 7.18) but was fully restored by 1 h. Resting mean whole-body pHi, measured by DMO distribution, averaged approx. 7.25 at a pHe of approx. 7.82 and fell after exercise to a low of 6.78 at a pHe of approx. 7.30. Whole-body pHi was slower to recover than pHe, requiring up to 12 h, with no subsequent alkalosis. Whole-body ECFV decreased by about 70 ml kg-1 due to a fluid shift into the ICF. Net H+ excretion to the water increased 1 h after exercise accompanied by an elevation in ammonia efflux. At 8–12 h, H+ excretion was reduced to resting levels and at 12–24 h, a net H+ uptake occurred. Lactate excretion amounted to approx. 1% of the net H+ excretion and only approx. 2% of the whole blood load. Only a small amount of the anaerobically produced H+ in the ICF appeared in the ECF and subsequently in the water. By 24 h, all the H+ excreted had been taken back up, thus correcting the extracellular alkalosis. The bulk of the H+ load remained intracellular, to be cleared by aerobic metabolism.


1994 ◽  
Vol 195 (1) ◽  
pp. 227-258 ◽  
Author(s):  
Y Wang ◽  
G J Heigenhauser ◽  
C M Wood

White muscle and arterial blood plasma were sampled at rest and during 4 h of recovery from exhaustive exercise in rainbow trout. A compound respiratory and metabolic acidosis in the blood was accompanied by increases in plasma lactate (in excess of the metabolic acid load), pyruvate, glucose, ammonia and inorganic phosphate levels, large elevations in haemoglobin concentration and haematocrit, red cell swelling, increases in the levels of most plasma electrolytes, but no shift of fluid out of the extracellular fluid (ECF) into the intracellular fluid (ICF) of white muscle. The decrease in white muscle pHi was comparable to that in pHe; both recovered by 4 h. Creatine phosphate and ATP levels were both reduced by 40% after exercise, the former recovering within 0.25 h, whereas the latter remained depressed until 4 h. Changes in creatine concentration mirrored those in creatine phosphate, whereas changes in IMP and ammonia concentration mirrored those in ATP. White muscle glycogen concentration was reduced 90% primarily by conversion to lactate; recovery was slow, to only 40% of resting glycogen levels by 4 h. During this period, most of the lactate and metabolic acid were retained in white muscle and there was excellent conservation of carbohydrate, suggesting that in situ glycogenesis rather than oxidation was the major fate of lactate. The redox state ([NAD+]/[NADH]) of the muscle cytoplasm, estimated from ICF lactate and pyruvate levels and pHi, remained unchanged from resting levels, challenging the traditional view of the 'anaerobic' production of lactate. Furthermore, the membrane potential, estimated from levels of ICF and ECF electrolytes using the Goldman equation, remained unchanged throughout, challenging the view that white muscle becomes depolarized after exhaustive exercise. Indeed, ICF K+ concentration was elevated. Lactate was distributed well out of electrochemical equilibrium with either the membrane potential (Em) or the pHe-pHi difference, supporting the view that lactate is actively retained in white muscle. In contrast, H+ was actively extruded. Ammonia was distributed passively according to Em rather than pHe-pHi throughout recovery, providing a mechanism for retaining high ICF ammonia levels for adenylate resynthesis in situ. Although lipid is not traditionally considered to be a fuel for burst exercise, substantial decreases in free carnitine and elevations in acyl-carnitines and acetyl-CoA concentrations indicated an important contribution of fatty acid oxidation by white muscle during both exercise and recovery.


1987 ◽  
Vol 128 (1) ◽  
pp. 235-253 ◽  
Author(s):  
S. I. Perry ◽  
M. G. Vermette

Rainbow trout were infused continuously for 24 h with epinephrine in order to elevate circulating levels of this hormone to those measured during periods of acute extracellular acidosis (approximately 5 X 10(−8) mol l-1). Concomitant effects on selected blood respiratory acid-base and ionic variables were evaluated. Infusion of epinephrine caused a transient respiratory acidosis as a result of hypoventilation and/or inhibition of red blood cell (RBC) bicarbonate dehydration. The acidosis was regulated by gradual accumulation of plasma bicarbonate. Even though whole blood pH (pHe) was depressed by 0.16 units, RBC pH (pHi) remained constant, thereby causing the transmembrane pH gradient (pHe-pHi) to decrease. A similar effect of epinephrine on RBC pH was observed in vitro, although the response required a higher concentration of epinephrine (2.0 X 10(−7) mol l-1). We speculate that the release of epinephrine during periods of depressed blood pH is important for preventing excessive shifts in RBC pH and for initiating a series of responses leading to plasma HCO3- accumulation and eventual restoration of blood acid-base status.


1998 ◽  
Vol 201 (22) ◽  
pp. 3085-3095 ◽  
Author(s):  
AE Julio ◽  
CJ Montpetit ◽  
SF Perry

The direct and modulating effects of acidosis on catecholamine secretion in rainbow trout (Oncorhynchus mykiss) were assessed in vivo using cannulated fish and in situ using a perfused cardinal vein preparation. In situ, acidosis (a reduction in perfusate pH from 7.9 to 7.4) did not elicit catecholamine release or modulate the secretion of catecholamines evoked by the non-specific cholinergic receptor agonist carbachol (3x10(-7) to 10(-5 )mol kg-1) or the muscarinic receptor agonist pilocarpine (10(-7 )mol kg-1). Acidosis, however, significantly increased the secretion rates of noradrenaline and adrenaline in response to nicotine (10(-8) to 10(-7 )mol kg-1). In vivo, intra-arterial injections of nicotine (300-600 nmol kg-1) into normocapnic or moderately hypercapnic fish (water PCO2=5 mmHg or 0.67 kPa) caused a dose-dependent elevation of circulating catecholamine levels. At the highest dose of nicotine, the rise in plasma catecholamine levels was significantly enhanced in the hypercapnic fish. Acute hypoxia in vivo caused an abrupt release of catecholamines when arterial haemoglobin O2-saturation was reduced to approximately 55-60 %; this catecholamine release threshold during hypoxia was unaltered in hypercapnic fish. However, the hypoxia-induced catecholamine release was significantly greater in hypercapnic fish than in normocapnic fish. The results of this study suggest that blood acid-base status, while not influencing catecholamine secretion directly or influencing the blood O2 content threshold for catecholamine release during hypoxia, may modulate the secretory process specifically in response to nicotinic receptor stimulation of chromaffin cells.


1981 ◽  
Vol 91 (1) ◽  
pp. 239-254
Author(s):  
P. R. H. Wilkes ◽  
R. L. Walker ◽  
D. G. McDonald ◽  
C. M. Wood

Blood gases, acid-base status, plasma ions, respiration, ventilation and cardiovascular function were measured in white suckers, using standard cannulation methods. Basic respiratory parameters under normoxia were compared to those in the active, pelagic rainbow trout and in other benthic teleosts. Sustained environmental hyperoxia (350–550 torr) increased arterial O2 (102–392 torr) and venous O2 (17–80 torr) tensions so that blood O2 transport occurred entirely via physical solution. Dorsal aortic blood pressure and heart rate fell, the latter due to an increase in vagal tone. Ventilation volume declined markedly (by 50%) due to a decrease in ventilatory stroke volume, but absolute O2 extraction rose so that O2 consumption was unaffected. While the preceding effects were stable with time, arterial and venous CO2 tensions approximately doubled within 4 h, and continued to increase gradually thereafter. This CO2 retention caused an acidosis (7.993–7.814) which was gradually compensated by an accumulation of plasma [HCO3−]. However, even after 72 h, arterial pH remained significantly depressed by 0.10 units. The gradual rise in plasma [HCO3−] was accompanied by a progressive fall in both [Na+] and [Cl−]; [K+] and [Ca2+] remained unchanged. The responses of the sucker to hyperoxia are compared to those of the rainbow trout.


1992 ◽  
Vol 173 (1) ◽  
pp. 181-203 ◽  
Author(s):  
B. James-Curtis ◽  
C. M. Wood

The relative roles of the kidney and urinary bladder in ion, fluid and acid-base regulation were examined in freshwater rainbow trout chronically infused with either 140 mmol l-1 NaCl or 140 mmol l-1 NaHCO3 (3 ml kg-1 h-1) for 32 h. NaCl had a negligible effect on blood ionic and acid-base status, whereas NaHCO3 induced a metabolic alkalosis characterized by a rise in arterial pH and [HCO3-] and an equimolar fall in [Cl-]. Urine was collected via either an internal catheter, which bypassed bladder function, or an external urinary catheter, which collected naturally voided urine. As a percentage of the infusion rate, glomerular filtration rate increased by about 135 %, but urine flow rate (UFR) by only 80 %, reflecting increased tubular reabsorption of H2O. During NaCl infusion, virtually all of the extra Na+ and Cl- filtered was reabsorbed by the kidney tubules, resulting in an increased UFR with largely unchanged composition. During NaHCO3 infusion, tubular Na+ and Cl- reabsorption again kept pace with filtration. HCO3- reabsorption also increased, but did not keep pace with filtration; an increased flow of HCO3--rich urine resulted, which excreted about 10 % of the infused base load. At rest, fish fitted with external catheters voided in discrete bursts of about 0.85 ml kg-1 at 25 min intervals. During infusion, burst frequency increased by about 40 % and burst volume by about 20 %. Reabsorption by the bladder reduced UFR by 25 %, the excretion of Na+ and Cl- by 50 %, of K+ by 44 % and of urea by 25 %. These differences persisted on a relative basis during NaCl and NaHCO3 infusion despite the decreased residence time. However, HCO3- was neither secreted nor reabsorbed by the bladder. We conclude that the freshwater kidney functions to remove as much NaCl as possible from the urine, regardless of the NaCl load, and this role is supplemented by bladder function. The bladder plays no role in acid-base regulation during metabolic alkalosis.


1996 ◽  
Vol 199 (10) ◽  
pp. 2331-2343 ◽  
Author(s):  
R Wilson ◽  
K Gilmour ◽  
R Henry ◽  
C Wood

A potential role for the intestine of seawater-adapted teleosts in acid­base regulation was investigated following earlier reports of highly alkaline rectal fluids in the gulf toadfish Opsanus beta. Rectal samples taken from starved seawater-adapted rainbow trout had a high fluid pH (8.90±0.03; mean ± s.e.m., N=13) and base (HCO3-+2CO32-) content of 157±26 mequiv kg-1 (N=11). In trout fitted with rectal catheters, rectal fluid was voided at a rate of 0.47±0.11 ml kg-1 h-1 (N=8), giving a net base excretion rate of 114±15 µequiv kg-1 h-1 (N=7). Drinking rates averaged 3.12±0.48 ml kg-1 h-1 (N=8), and accounted for only 6 % of the base excreted via the intestine, indicating substantial net transport of endogenously derived base into the intestine. Rectally excreted base was approximately balanced by an equivalent efflux of net acid from non-rectal sources (possibly as NH4+ excretion via the gills). Samples taken from four sites along the intestine revealed that the most anterior region (the pyloric intestine) was responsible for the majority of HCO3-+2CO32- accumulation. The pyloric intestine was subsequently perfused in situ to investigate possible mechanisms of base secretion. Net base fluxes were found to be dependent on luminal Cl-, 76 % stimulated by amiloride, 20 % inhibited by 10(-4) mol l-1 acetazolamide, but unaffected by either 10(-4) mol l-1 SITS or 2x10(-5) mol l-1 DIDS. This suggests that the mechanism of base secretion within the pyloric intestine may involve a Cl-/HCO3--ATPase. It is speculated that intestinal base secretion may play a role in facilitating osmoregulation of seawater-adapted teleosts.


Sign in / Sign up

Export Citation Format

Share Document