scholarly journals By land or by sea: a modified C-start motor pattern drives the terrestrial tail-flip

2016 ◽  
Vol 219 (12) ◽  
pp. 1860-1865 ◽  
Author(s):  
Benjamin M. Perlman ◽  
Miriam A. Ashley-Ross
Keyword(s):  
2001 ◽  
Vol 204 (10) ◽  
pp. 1817-1830 ◽  
Author(s):  
J.C. Nauen ◽  
R.E. Shadwick

The tail-flip escape behavior is a stereotypical motor pattern of decapod crustaceans in which swift adduction of the tail to the thorax causes the animal to rotate, move vertically into the water column and accelerate rapidly backwards. Previous predictions that a strong jet force is produced during the flip as the tail adducts to the body are not supported by our simultaneous measurements of force production (using a transducer) and the kinematics (using high-speed video) of tail-flipping by the California spiny lobster Panulirus interruptus. Maximum force production occurred when the tail was positioned approximately normal to the body. Resultant force values dropped to approximately 15 % of maximum during the last third of the flip and continued to decline as the tail closed against the body. In addition, maximum acceleration of the body of free-swimming animals occurs when the tail is positioned approximately normal to the body, and acceleration declines steadily to negative values as the tail continues to close. Thus, the tail appears to act largely as a paddle. Full flexion of the tail to the body probably increases the gliding distance by reducing drag and possibly by enhancing fluid circulation around the body.Morphological measurements indicate that Panulirus interruptus grows isometrically. However, measurements of tail-flip force production for individuals with a body mass (M(b)) ranging from 69 to 412 g indicate that translational force scales as M(b)(0.83). This result suggests that force production scales at a rate greater than that predicted by the isometric scaling of muscle cross-sectional area (M(b)(2/3)), which supports previously published data showing that the maximum accelerations of the tail and body of free-swimming animals are size-independent. Torque (τ) scaled as M(b)(1.29), which is similar to the hypothesized scaling relationship of M(b)(4/3). Given that τ is proportional to M(b)(1.29), one would predict rotational acceleration of the body (α) to decrease with increasing size as M(b)(−)(0.37), which agrees with previously published kinematic data showing a decrease in α with increased M(b).


1982 ◽  
Vol 48 (4) ◽  
pp. 914-937 ◽  
Author(s):  
D. F. Russell ◽  
D. K. Hartline

1. Neurons in the central pattern generator for the "pyloric" motor rhythm of the lobster stomatogastric ganglion were investigated for the possible involvement of regenerative membrane properties in their membrane-potential oscillations and bursting output patterns. 2. Evidence was found that each class of pyloric-system neurons can possess a capability for generating prolonged regenerative depolarizations by a voltage-dependent membrane mechanism. Such responses have been termed plateau potentials. 3. Several tests were applied to determine whether a given cell possessed a plateau capability. First among these was the ability to trigger all-or-none bursts of nerve impulses by brief depolarizing current pulses and to terminate bursts in an all-or-none fashion with brief hyperpolarizing current pulses. Tests were made under conditions of a high level of activity in the pyloric generator, often in conjunction with the use of hyperpolarizing offsets to the cell under test to suppress ongoing bursting. 4. For each class, the network of synaptic interconnections among the pyloric-system neurons was shown to not be the cause of the regenerative responses observed. 5. Plateau potentials are viewed as a driving force for axon spiking during bursts and as interacting with the synaptic network in the formation of the pyloric motor pattern.


Neurology ◽  
2001 ◽  
Vol 57 (2) ◽  
pp. 300-304 ◽  
Author(s):  
F. Provini ◽  
R. Vetrugno ◽  
S. Meletti ◽  
G. Plazzi ◽  
L. Solieri ◽  
...  

2001 ◽  
Vol 280 (6) ◽  
pp. G1055-G1060 ◽  
Author(s):  
Pamela J. Hornby

In the last decade, there has been a dramatic increase in academic and pharmaceutical interest in central integration of vago-vagal reflexes controlling the gastrointestinal tract. Associated with this, there have been substantial efforts to determine the receptor-mediated events in the dorsal vagal complex that underlie the physiological responses to distension or variations in the composition of the gut contents. Strong evidence supports the idea that glutamate is a transmitter in afferent vagal fibers conveying information from the gut to the brain, and the implications of this are discussed in this themes article. Furthermore, both ionotropic and metabotropic glutamate receptors mediate pre- and postsynaptic control of glutamate transmission related to several reflexes, including swallowing motor pattern generation, gastric accommodation, and emesis. The emphasis of this themes article is on the potential therapeutic benefits afforded by modulation of these receptors at the site of the dorsal vagal complex.


1996 ◽  
Vol 76 (3) ◽  
pp. 687-717 ◽  
Author(s):  
E. Marder ◽  
R. L. Calabrese

Rhythmic movements are produced by central pattern-generating networks whose output is shaped by sensory and neuromodulatory inputs to allow the animal to adapt its movements to changing needs. This review discusses cellular, circuit, and computational analyses of the mechanisms underlying the generation of rhythmic movements in both invertebrate and vertebrate nervous systems. Attention is paid to exploring the mechanisms by which synaptic and cellular processes interact to play specific roles in shaping motor patterns and, consequently, movement.


1981 ◽  
Vol 229 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Brian Mulloney ◽  
Donald H. Perkel ◽  
Rubén W. Budelli

Sign in / Sign up

Export Citation Format

Share Document