Wave-induced forces on the giant kelp Macrocystis pyrifera (Agardh): field test of a computational model

1996 ◽  
Vol 199 (12) ◽  
pp. 2645-2654 ◽  
Author(s):  
B Utter ◽  
M Denny

We propose a hydro-mechanical numerical model that predicts the maximal tension to which stipes of the giant kelp Macrocystis pyrifera will be subjected when exposed to ocean waves. Predicted maximal tensions are close to those measured in the field. The strength of Macrocystis pyrifera stipes was measured, allowing our prediction of forces to be translated into a prediction of the fraction of stipes broken. Predicted breakage is low even for extreme storm waves, a testament to the mechanical design of individual kelp fronds. However, empirically measured rates of kelp mortality can be high, considerably higher than those predicted on the basis of hydrodynamic forces acting alone. This indicates that factors not taken into account in our model (such as holdfast dislodgment, entanglement of stipes, damage from herbivory and wave breaking) contribute substantially to mortality in Macrocystis pyrifera.

1983 ◽  
Vol 4 ◽  
pp. 277-282 ◽  
Author(s):  
Vernon A. Squire

Results from a numerical model for the computation of ice-floe motions in ocean waves are presented and discussed for floes of various sectional shapes. It is shown that the beam-to-draft ratio is a crucial factor in determining the behaviour of each floe, and that ridges and keels can substantially affect the roll and sway characteristics, particularly for thick floes. Undercuts beneath floes appear to have little effect, but a protruding sill can lead to decreased motion at certain frequencies and a reduced capability for making waves. As the underwater character of an ice floe cannot easily be measured, it is necessary to infer draft from freeboard estimates using the method proposed by Ackley and others (1976). Although most of this paper is concerned with rigid body motions, a brief account is included of a modification to the model which allows each floe to bend on the passing wave. By this means, wave-induced flexure is discussed for floes of non-simple underwater shape.


1983 ◽  
Vol 4 ◽  
pp. 277-282 ◽  
Author(s):  
Vernon A. Squire

Results from a numerical model for the computation of ice-floe motions in ocean waves are presented and discussed for floes of various sectional shapes. It is shown that the beam-to-draft ratio is a crucial factor in determining the behaviour of each floe, and that ridges and keels can substantially affect the roll and sway characteristics, particularly for thick floes. Undercuts beneath floes appear to have little effect, but a protruding sill can lead to decreased motion at certain frequencies and a reduced capability for making waves. As the underwater character of an ice floe cannot easily be measured, it is necessary to infer draft from freeboard estimates using the method proposed by Ackley and others (1976). Although most of this paper is concerned with rigid body motions, a brief account is included of a modification to the model which allows each floe to bend on the passing wave. By this means, wave-induced flexure is discussed for floes of non-simple underwater shape.


1989 ◽  
Vol 28 (3) ◽  
pp. 277-292 ◽  
Author(s):  
R.J. Seymour ◽  
M.J. Tegner ◽  
P.K. Dayton ◽  
P.E. Parnell

Author(s):  
Phung Dang Hieu ◽  
Le Duc Dung ◽  
Nguyen Thi Khang

A numerical model based on the 2D Boussinesq equations has been developed using the Finite Volume Method. The model was verified against experimental data for the case of wave breaking on a sloping beach. Simulated results by the model showed that the model has good capability of simulation of waves in the nearshore area. Numerical simulation was also carried out for the problem of waves on a plane beach with a breakwater and submerged dunes. Simulated results were compared with those computed by MIKE 21. The comparison showed that good agreements were obtained and confirmed the applicability of the Boussinesq model to the simulation of physical phenomena of waves in the nearshore areas, especially, suitable for the simulation of wave-induced current including rip currents.


2021 ◽  
Vol 657 ◽  
pp. 59-71
Author(s):  
BA Beckley ◽  
MS Edwards

The forest-forming giant kelp Macrocystis pyrifera and the communities it supports have been decreasing across their native ranges in many parts of the world. The sudden removal of giant kelp canopies by storms increases space and light for the colonization by understory macroalgae, such as Desmarestia herbacea, which can inhibit M. pyrifera recovery and alter local community composition. Understanding the mechanisms by which algae such as D. herbacea interact with M. pyrifera can provide insight into patterns of kelp forest recovery following these disturbances and can aid in predicting future community structure. This study experimentally tested the independent and combined effects of two likely competitive mechanisms by which D. herbacea might inhibit recovery of M. pyrifera in the Point Loma kelp forest in San Diego, California (USA). Specifically, we conducted field experiments to study the individual and combined effects of shade and scour by D. herbacea on the survival of M. pyrifera microscopic life stages, and the recruitment, survival, and growth of its young sporophytes. Our results show that scour had the strongest negative effect on the survival of M. pyrifera microscopic life stages and recruitment, but shade and scour both adversely affected survival and growth of these sporophytes as they grew larger. Canopy-removing storms are increasing in frequency and intensity, and this change could facilitate the rise of understory species, like D. herbacea, which might alter community succession and recovery of kelp forests.


Author(s):  
Mojtaba Azizi ◽  
Majid Shahravi ◽  
Jabbar-Ali Zakeri

Nowadays, with various advancements in the railway industry and increasing speed of trains, the design of railway tracks and vehicles has become vitally important. One of the frequent problems of ballasted tracks is the existence of unsupported sleepers. This phenomenon occurs due to the lack of ballast underneath the sleepers. Here, a model is presented, in which a flexible track model in a multibody dynamics program is developed, in order to study the dynamic behavior of a vehicle. By utilizing the model, it is feasible to simulate unsupported sleepers on the flexible track including rail, sleeper, and ballast components. In order to verify the results of numerical model, a field test is performed. Findings indicate that, in the case of a single unsupported sleeper through the track, the ride comfort index increased by 100% after increasing the train speed from 30 to 110 km/h. Moreover, when it is needed to have ride comfort index improvement over the uncomfortable level, the vehicle speed should be less than 70 km/h and 50 km/h for tracks with one unsupported sleeper and two unsupported sleepers, respectively.


Ecology ◽  
2004 ◽  
Vol 85 (12) ◽  
pp. 3267-3276 ◽  
Author(s):  
P. T. Raimondi ◽  
D. C. Reed ◽  
B. Gaylord ◽  
L. Washburn

2020 ◽  
Author(s):  
Jason M. Smith ◽  
Gordon Blasco ◽  
Mark A. Brzezinski ◽  
John M. Melack ◽  
Daniel C. Reed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document