A primary cation transport by a V-type ATPase of low specificity

1996 ◽  
Vol 199 (6) ◽  
pp. 1327-1334 ◽  
Author(s):  
J Küppers ◽  
I Bunse

The enzyme involved in outward K+ transport in insect epithelia belongs to the family of V-ATPases. Evidence has been reported relating the generation of the K+ gradient to a primary electrogenic proton transport via a distinct electrophoretic nH+/K+ antiport. The subject of this paper is the transport of K+ at a thread hair sensillum of the cockroach in situ. We recorded changes in the voltage and resistance of the ion-transporting membrane and of shifts in pH caused by inhibition of energy metabolism and by putative inhibitors of a proton/cation exchanger. The results are supplemented by previous determinations of the K+ activities in the same preparation. 1. In cockroach hair sensilla, the ion transport generates a membrane voltage of 105 mV. We found that the transport rendered the positive output compartment alkaline with respect to the cytoplasm by 1.0 pH unit compared with the pH at equilibrium distribution, and we infer that proton transport cannot be the process that energizes the generation of the K+ gradient. 2. The ion transport created an electrochemical potential difference for protons, DeltaetaH, of approximately 4.5 kJ mol-1, while the potential difference for K+, DeltaetaK, amounted to approximately 11 kJ mol-1. Both potential differences are directed to the cytosol. It follows from DeltaetaK/DeltaetaH that an antiport would have to be electrophoretic to drive K+ by DeltaetaH and it should, therefore, contribute to the membrane conductance. Amiloride and harmaline did not significantly change the pH in the adjacent spaces and did not affect the voltage or the resistance of the transporting membrane. Previous determinations of the impedance have shown that the ATP-independent conductance of this membrane is small, supporting the conclusion that it lacks an electrophoretic antiport. From these results, we deduce that K+ transport in cockroach sensilla is not secondary to a proton transport and an electrochemical proton gradient. The phenomena observed match the performance of a primary, electrogenic, cation-translocating ATPase of the type deduced from analyses of the short-circuit current at the midgut epithelium of lepidopteran larvae. The validity of the H+ transport/antiport hypothesis is discussed.

1992 ◽  
Vol 82 (6) ◽  
pp. 667-672 ◽  
Author(s):  
S. N. Smith ◽  
E. W. F. W. Alton ◽  
D. M. Geddes

1. The basic defect in cystic fibrosis relates to abnormalities of ion transport in affected tissues, such as the respiratory and gastrointestinal tracts. The identification of the cystic fibrosis gene has enabled studies on the production of a cystic fibrosis transgenic mouse to be undertaken. Knowledge of normal ion transport will be necessary for the validation of any such animal model. We have therefore characterized selected responses of the murine trachea and caecum mounted in ‘mini’ Ussing chambers under open-circuit conditions. 2. Basal values for the trachea were: potential difference, 1.1 mV (sem 0.2; n=18); equivalent short-circuit current, 20.4 μA/cm2 (3.6); conductance, 18.2 mS/cm2 (1.7). Corresponding values for the caecum were: potential difference, 0.7 mV (0.1; n=18); equivalent short-circuit current, 11.0 μA/cm2 (1.6); conductance, 14.5 mS/cm2 (1.4). 3. Amiloride (10 μmol/l) produced a significant (P < 0.001) fall in potential difference of 43.0% (5.7) in the trachea, but had no significant effect in the caecum. 4. Subsequently, one of three protocols was used to assess the capacity of either tissue for chloride secretion. Addition of a combination of forskolin (1 μmol/l) and zardaverine (10 μmol/l) produced rises in the potential difference of 873% (509) in the trachea and 399% (202) in the caecum. Both A23187 (10 μmol/l) and phorbol dibutyrate (10 nmol/l) increased tracheal potential difference by 350% (182) and 147% (47), respectively. Neither had a significant effect in the caecum. 5. Subsequent addition of bumetanide caused a fall in the stimulated potential difference of between 39.8% and 71.7%, depending on secretagogue and tissue type. 6. When a homozygous transgenic cystic fibrosis mouse becomes available, these responses should allow such an animal to be distinguished from normal or heterozygous mice.


1990 ◽  
Vol 150 (1) ◽  
pp. 425-442 ◽  
Author(s):  
M. E. CHAMBERLIN

1. The transport of K+, Na+ and Cl− across the three morphologically distinct regions of the tobacco hornworm midgut was measured under open-circuit and short-circuit conditions. Using a saline which contained physiological levels of haemolymph ions, amino acids and sugars, it was shown that all three sections actively secrete K+ and Cl− and absorb Na+. 2. The anterior section maintained the highest short-circuit current (Isc), transepithelial potential difference (PD) and net K+ secretion. The middle section had the lowest Isc, PD and K+ secretion, but absorbed Na+ at the greatest rate. The posterior section had the greatest rate of Cl− secretion. 3. Omission of K+ depressed the Isc. Subsequent addition of K+ stimulated the Isc to control levels in the middle and posterior sections, but not in the anterior section. Omission of Cl− or Na+ also inhibited the Isc. Reintroduction of Cl− had no stimulatory effect and, although reintroduction of Na+ stimulated the Isc, control levels were not attained. 4. Unlike the results reported in previous studies, the net K+ transport exceeded the Isc in all three midgut sections. The deficit in Isc was not made up by the transport of Na+ and Cl−. The results are discussed with respect to proposed models of ion transport across this epithelium.


2008 ◽  
Vol 1 (2) ◽  
pp. 75 ◽  
Author(s):  
Jun Ho Lee ◽  
Chae-Seo Rhee ◽  
Dae Woo Kim ◽  
Chul Hee Lee

2010 ◽  
Vol 299 (1) ◽  
pp. R92-R100 ◽  
Author(s):  
Jens Berger ◽  
Martin Hardt ◽  
Wolfgang G. Clauss ◽  
Martin Fronius

A thin liquid layer covers the lungs of air-breathing vertebrates. Active ion transport processes via the pulmonary epithelial cells regulate the maintenance of this layer. This study focuses on basolateral Cl− uptake mechanisms in native lungs of Xenopus laevis and the involvement of the Na+/K+/2 Cl− cotransporter (NKCC) and HCO3−/Cl− anion exchanger (AE), in particular. Western blot analysis and immunofluorescence staining revealed the expression of the NKCC protein in the Xenopus lung. Ussing chamber experiments demonstrated that the NKCC inhibitors (bumetanide and furosemide) were ineffective at blocking the cotransporter under basal conditions, as well as under pharmacologically stimulated Cl−-secreting conditions (forskolin and chlorzoxazone application). However, functional evidence for the NKCC was detected by generating a transepithelial Cl− gradient. Further, we were interested in the involvement of the HCO3−/Cl− anion exchanger to transepithelial ion transport processes. Basolateral application of DIDS, an inhibitor of the AE, resulted in a significantly decreased the short-circuit current (ISC). The effect of DIDS was diminished by acetazolamide and reduced by increased external HCO3− concentrations. Cl− secretion induced by forskolin was decreased by DIDS, but this effect was abolished in the presence of HCO3−. These experiments indicate that the AE at least partially contributes to Cl− secretion. Taken together, our data show that in Xenopus lung epithelia, the AE, rather than the NKCC, is involved in basolateral Cl− uptake, which contrasts with the common model for Cl− secretion in pulmonary epithelia.


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 351 ◽  
Author(s):  
C. Tse ◽  
Julie In ◽  
Jianyi Yin ◽  
Mark Donowitz ◽  
Michele Doucet ◽  
...  

One of the characteristic manifestations of Shiga-toxin-producing Escherichia coli (E. coli) infection in humans, including EHEC and Enteroaggregative E. coli O104:H4, is watery diarrhea. However, neither Shiga toxin nor numerous components of the type-3 secretion system have been found to independently elicit fluid secretion. We used the adult stem-cell-derived human colonoid monolayers (HCM) to test whether EHEC-secreted extracellular serine protease P (EspP), a member of the serine protease family broadly expressed by diarrheagenic E. coli can act as an enterotoxin. We applied the Ussing chamber/voltage clamp technique to determine whether EspP stimulates electrogenic ion transport indicated by a change in short-circuit current (Isc). EspP stimulates Isc in HCM. The EspP-stimulated Isc does not require protease activity, is not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated, but is partially Ca2+-dependent. EspP neutralization with a specific antibody reduces its potency in stimulating Isc. Serine Protease A, secreted by Enteroaggregative E. coli, also stimulates Isc in HCM, but this current is CFTR-dependent. In conclusion, EspP stimulates colonic CFTR-independent active ion transport and may be involved in the pathophysiology of EHEC diarrhea. Serine protease toxins from E. coli pathogens appear to serve as enterotoxins, potentially significantly contributing to watery diarrhea.


1985 ◽  
Vol 59 (4) ◽  
pp. 1191-1195 ◽  
Author(s):  
F. J. Al-Bazzaz ◽  
T. Jayaram

Calcium (Ca) affects many cellular functions of the respiratory tract mucosa and might alter the viscoelastic properties of mucus. To evaluate Ca homeostasis in a respiratory epithelium we investigated transport of Ca by the canine tracheal mucosa. Mucosal tissues were mounted in Ussing-type chambers and bathed with Krebs-Henseleit solution at 37 degrees C. Unidirectional fluxes of 45Ca were determined in tissues that were matched by conductance and short-circuit current (SCC). Under short-circuit conditions there was a significant net Ca secretion of 1.82 +/- 0.36 neq . cm-2 . h-1 (mean +/- SE). Under open-circuit conditions, where the spontaneous transepithelial potential difference could attract Ca toward the lumen, net Ca secretion increased significantly to 4.40 +/- 1.14 compared with 1.54 +/- 1.17 neq . cm-2 . h-1 when the preparation was short-circuited. Addition of a metabolic inhibitor, 2,4-dinitrophenol (2 mM in the mucosal bath), decreased tissue conductance and SCC and slightly decreased the unidirectional movement of Ca from submucosa to lumen. Submucosal epinephrine (10 microM) significantly enhanced Ca secretion by 2.0 +/- 0.63 neq . cm-2 . h-1. Submucosal ouabain (0.1 mM) failed to inhibit Ca secretion. The data suggest that canine tracheal mucosa secretes Ca; this secretory process is augmented by epinephrine or by the presence of a transepithelial potential difference as found under in vivo conditions.


2000 ◽  
Vol 279 (2) ◽  
pp. C461-C479 ◽  
Author(s):  
Daniel C. Devor ◽  
Robert J. Bridges ◽  
Joseph M. Pilewski

Forskolin, UTP, 1-ethyl-2-benzimidazolinone (1-EBIO), NS004, 8-methoxypsoralen (Methoxsalen; 8-MOP), and genistein were evaluated for their effects on ion transport across primary cultures of human bronchial epithelium (HBE) expressing wild-type (wt HBE) and ΔF508 (ΔF-HBE) cystic fibrosis transmembrane conductance regulator. In wt HBE, the baseline short-circuit current ( I sc) averaged 27.0 ± 0.6 μA/cm2 ( n = 350). Amiloride reduced this I sc by 13.5 ± 0.5 μA/cm2 ( n = 317). In ΔF-HBE, baseline I sc was 33.8 ± 1.2 μA/cm2 ( n = 200), and amiloride reduced this by 29.6 ± 1.5 μA/cm2 ( n = 116), demonstrating the characteristic hyperabsorption of Na+ associated with cystic fibrosis (CF). In wt HBE, subsequent to amiloride, forskolin induced a sustained, bumetanide-sensitive I sc(Δ I sc = 8.4 ± 0.8 μA/cm2; n = 119). Addition of acetazolamide, 5-( N-ethyl- N-isopropyl)-amiloride, and serosal 4,4′-dinitrostilben-2,2′-disulfonic acid further reduced I sc, suggesting forskolin also stimulates HCO3 − secretion. This was confirmed by ion substitution studies. The forskolin-induced I scwas inhibited by 293B, Ba2+, clofilium, and quinine, whereas charybdotoxin was without effect. In ΔF-HBE the forskolin I sc response was reduced to 1.2 ± 0.3 μA/cm2 ( n = 30). In wt HBE, mucosal UTP induced a transient increase in I sc (Δ I sc = 15.5 ± 1.1 μA/cm2; n = 44) followed by a sustained plateau, whereas in ΔF-HBE the increase in I sc was reduced to 5.8 ± 0.7 μA/cm2 ( n = 13). In wt HBE, 1-EBIO, NS004, 8-MOP, and genistein increased I sc by 11.6 ± 0.9 ( n = 20), 10.8 ± 1.7 ( n = 18), 10.0 ± 1.6 ( n = 5), and 7.9 ± 0.8 μA/cm2( n = 17), respectively. In ΔF-HBE, 1-EBIO, NS004, and 8-MOP failed to stimulate Cl− secretion. However, addition of NS004 subsequent to forskolin induced a sustained Cl−secretory response (2.1 ± 0.3 μA/cm2, n = 21). In ΔF-HBE, genistein alone stimulated Cl− secretion (2.5 ± 0.5 μA/cm2, n = 11). After incubation of ΔF-HBE at 26°C for 24 h, the responses to 1-EBIO, NS004, and genistein were all potentiated. 1-EBIO and genistein increased Na+ absorption across ΔF-HBE, whereas NS004 and 8-MOP had no effect. Finally, Ca2+-, but not cAMP-mediated agonists, stimulated K+ secretion across both wt HBE and ΔF-HBE in a glibenclamide-dependent fashion. Our results demonstrate that pharmacological agents directed at both basolateral K+ and apical Cl− conductances directly modulate Cl−secretion across HBE, indicating they may be useful in ameliorating the ion transport defect associated with CF.


1985 ◽  
Vol 116 (1) ◽  
pp. 153-167
Author(s):  
J. W. HANRAHAN ◽  
J. E. PHILLIPS

1. Electrophysiological and tracer flux techniques were used to studyregulation of KC1 reabsorption across locust recta. Physiologically high K+levels (100 mmolI−1) on the lumen side stimulated net 36Cl flux and reduced the theoretical energy cost of anion transport under open-circuit conductions. 2. The stimulation of short-circuit current (Ibc i.e. active C− absorption) by crude corpora cardiaca extracts (CC) was not dependent on exogenous Ca2+. Stimulations of Ibc were greatly enhanced in the presence of theophylline, indicating that the rate of synthesis of cAMP is increased by CC extracts. High CC levels lowered transepithelial resistance (Rt), suggesting that chloride transport stimulating hormone (CTSH) regulates both active Cl− absorption and counter-ion (K+) permeability. 3. High mucosal osmolarity or K+ concentration decreased Ibc and caused a disproportionately large increase in Rt, consistent with a decrease in theshunt (K+) conductance. Measurements of relative mucosal-to-serosal membrane resistance confirmed that high mucosal K+ levels reduced apical membrane conductance. Lowering mucosal pH to values observed in vivo atthe end of resorptive cycles also inhibited Ibc, apparently without affecting K+ permeability.


1991 ◽  
Vol 260 (5) ◽  
pp. G703-G710 ◽  
Author(s):  
B. R. Grubb

In the fowl cecum in vitro, the influence of glucose and the three most prevalent naturally occurring volatile fatty acids (acetate, propionate, butyrate) on short-circuit current (Isc), electrical resistance, and transport of Na and Cl was determined. When glucose, acetate, or butyrate was present, ion transport was characterized by electrogenic Na absorption, greater than 65% of which was amiloride inhibitable, and Cl secretion, which also was electrogenic. Isc could be completely accounted for by net fluxes of Na and Cl. When glucose, acetate, or butyrate (10 mM both sides) was included in the incubation medium, cecal tissue maintained its Isc and a constant rate of net Na absorption and Cl secretion for a 5-h period. When no substrate was present or propionate was included in the medium, a marked fall in Isc and net Na and Cl fluxes was seen. Glucose caused an increase in Isc when added only to the serosal side. As 3-O-methylglucose (not metabolized) was not effective in stimulating Isc of the cecum (serosal or mucosal addition), it appeared that glucose increased Isc by acting as an energy substrate for active Na transport. Acetate and butyrate appeared to be equally effective in stimulating Na transport and Isc when placed on either side of the membrane. When the preparation was supplied with glucose (serosal side) and acetate was added to the mucosal side, no further stimulation of Isc occurred. Thus it appeared that acetate and butyrate were acting as substrates for active Na transport rather than stimulating Na transport by some other mechanism such as a cotransport with Na.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document