scholarly journals The myth of scorpion suicide: are scorpions insensitive to their own venom?

1998 ◽  
Vol 201 (18) ◽  
pp. 2625-2636
Author(s):  
C Legros ◽  
MF Martin-Eauclaire ◽  
D Cattaert

The resistance of the scorpion Androctonus australis to its own venom, as well as to the venom of other species, was investigated. A comparison of the electrical and pharmacological properties of muscle and nerve fibres from Androctonus australis with those from the crayfish Procambarus clarkii enabled us to understand the lack of effect of scorpion venom (110-180 microg ml-1) and purified toxins, which are active on voltage-gated Na+ and K+ channels, Ca2+-activated K+ channels, on scorpion tissues. Voltage-clamp experiments showed that peptide K+ channel blockers from scorpion and snake have no effect on currents in muscle and nerve fibres from either scorpions or crayfish. The scorpion toxin kaliotoxin (KTX), a specific blocker of Kv1.1 and Kv1.3 K+ channels, had no effect on muscle fibres of A. australis (2 micromol l-1) or P. clarkii (400 nmol l-1). Similarly, charybdotoxin (ChTX) had no effect on the muscle fibres of A. australis (10 micromol l-1) or P. clarkii (200 nmol l-1) and neither did the snake toxin dendrotoxin (DTX) at concentrations of 100 nmol l-1 in A. australis and 200 nmol l-1 in P. clarkii. These three toxins (KTX, ChTX and DTX) did not block K+ currents recorded from nerve fibres in P. clarkii. The pharmacology of the K+ channels in these two arthropods did not conform to that previously described for K+ channels in other species. Current-clamp experiments clearly indicated that the venom of A. australis (50 microg ml-1) had no effect on the shape of the action potential recorded from nerve cord axons from A. australis. At a concentration of 50 microg ml-1, A. australis venom greatly prolonged the action potential in the crayfish giant axon. The absence of any effect of the anti-mammal <IMG src="/images/symbols/&agr ;.gif" WIDTH="9" HEIGHT="12" ALIGN="BOTTOM" NATURALSIZEFLAG="3">-toxin AaH II (100 nmol l-1) and the anti-insect toxin AaH IT1 (100 nmol l-1) on scorpion nerve fibres revealed strong pharmacological differences between the voltage-gated Na+ channels of scorpion and crayfish. We conclude that the venom from A. australis is pharmacologically inactive on K+ channels and on voltage-sensitive Na+ channels from this scorpion.

2017 ◽  
Vol 150 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Clay M. Armstrong ◽  
Stephen Hollingworth

We are wired with conducting cables called axons that rapidly transmit electrical signals (e.g., “Ouch!”) from, for example, the toe to the spinal cord. Because of the high internal resistance of axons (salt water rather than copper), a signal must be reinforced after traveling a short distance. Reinforcement is accomplished by ion channels, Na channels for detecting the signal and reinforcing it by driving it further positive (to near 50 mV) and K channels for then restoring it to the resting level (near −70 mV). The signal is called an action potential and has a duration of roughly a millisecond. The return of membrane voltage (Vm) to the resting level after an action potential is facilitated by “inactivation” of the Na channels: i.e., an internal particle diffuses into the mouth of any open Na channel and temporarily blocks it. Some types of K channels also show inactivation after being open for a time. N-type inactivation of K channels has a relatively fast time course and involves diffusion of the N-terminal of one of the channel’s four identical subunits into the channel’s inner mouth, if it is open. This mechanism is similar to Na channel inactivation. Both Na and K channels also display slower inactivation processes. C inactivation in K channels involves changes in the channel’s outer mouth, the “selectivity filter,” whose normal function is to prevent Na+ ions from entering the K channel. C inactivation deforms the filter so that neither K+ nor Na+ can pass.


1994 ◽  
Vol 72 (1) ◽  
pp. 349-359 ◽  
Author(s):  
O. Matzner ◽  
M. Devor

1. We used the tested fiber method to record from single myelinated afferents axons ending in a chronic nerve injury site (neuroma) in the rat sciatic nerve or L4,5 dorsal root. Axons were chosen for study that fired spontaneously with a stable tonic or interrupted (bursty) autorhythmic firing pattern. 2. Agents that block voltage-sensitive Na+ channels [tetrodotoxin (TTX), lidocaine], voltage-sensitive Ca2+ channels (Cd2+, Co2+, Ni2+, verapamil, D600, nifedipine, and fluarizine), volt-age-sensitive K+ channels [tetraethylammonium (TEA), 4-aminopyridine (4-AP)], and Ca(2+)-activated K+ channels (gK+Ca2+;quinidine, apamine) were applied topically to the neuroma. Effects on baseline rhythmogenesis and on the duty cycle of bursting were documented. Spike pattern analysis was used to determine whether changes in firing frequency were associated with changes in impulse initiation (electrogenesis), or resulted from (partial) block of impulse propagation downstream from the site of electrogenesis. Effects of veratridine were also noted. 3. Na+ channel blockers consistently quenched neuroma firing, and they did so by suppressing the process of impulse initiation. Only rarely was propagation block the dominant process. In bursty fibers the duration of on-periods shortened as the duration of off-periods lengthened, without a significant change in the baseline interspike interval (ISI). Veratridine accelerated firing, also via the impulse generating process. 4. Ca2+ channel blockers had essentially no effect on baseline firing rate (i.e., ISI). 5. Ca2+ channel blockers, as well as blockers of gK+Ca2+, had substantial, but inconsistent effects on burst pattern. It is not clear whether this reflects variability in the experimental conditions, or heterogeneity among the fibers sampled. 6. Blockade of K+ channels failed to evoke rhythmogenesis in acutely cut axons as it does in chronically injured axons, even in the presence of veratridine. This is consistent with other evidence that ectopic neuroma firing depends on postinjury remodeling of membrane electrical properties. 7. The data indicate that, in chronically injured axons, the inward currents that underly electrogenicity, enable ectopic discharge, and, together with outward K+ currents, set the fundamental firing rhythm (ISI), operate primarily with the use of voltage-sensitive Na+ rather than Ca2+ channels. 8. The on-off duty cycle in bursty fibers was affected by Na+ channel ligands and also, although less so, and less consistently by, Ca2+ channel ligands. This indicates that both may play a role in the slow modulations of membrane potential that presumably underly interrupted autorhythmicity.


1992 ◽  
Vol 68 (4) ◽  
pp. 985-1000 ◽  
Author(s):  
H. Sontheimer ◽  
J. A. Black ◽  
B. R. Ransom ◽  
S. G. Waxman

1. Na+ and K+ channel expression was studied in cultured astrocytes derived from P--0 rat spinal cord using whole cell patch-clamp recording techniques. Two subtypes of astrocytes, pancake and stellate, were differentiated morphologically. Both astrocyte types showed Na+ channels and up to three forms of K+ channels at certain stages of in vitro development. 2. Both astrocyte types showed pronounced K+ currents immediately after plating. Stellate but not pancake astrocytes additionally showed tetrodotoxin (TTX)-sensitive inward Na+ currents, which displayed properties similar to neuronal Na+ currents. 3. Within 4-5 days in vitro (DIV), pancake astrocytes lost K(+)-current expression almost completely, but acquired Na+ currents in high densities (estimated channel density approximately 2-8 channels/microns2). Na+ channel expression in these astrocytes is approximately 10- to 100-fold higher than previously reported for glial cells. Concomitant with the loss of K+ channels, pancake astrocytes showed significantly depolarized membrane potentials (-28.1 +/- 15.4 mV, mean +/- SD), compared with stellate astrocytes (-62.5 +/- 11.9 mV, mean +/- SD). 4. Pancake astrocytes were capable of generating action-potential (AP)-like responses under current clamp, when clamp potential was more negative than resting potential. Both depolarizing and hyperpolarizing current injections elicited overshooting responses, provided that cells were current clamped to membrane potentials more negative than -70 mV. Anode-break spikes were evoked by large hyperpolarizations (less than -150 mV). AP-like responses in these hyperpolarized astrocytes showed a time course similar to neuronal APs under conditions of low K+ conductance. 5. In stellate astrocytes, AP-like responses were not observed, because the K+ conductance always exceeded Na+ conductance by at least a factor of 3. Thus stellate spinal cord astrocyte membranes are stabilized close to EK as previously reported for hippocampal astrocytes. 6. It is concluded that spinal cord pancake astrocytes are capable of synthesizing Na+ channels at densities that can, under some conditions, support electrogenesis. In vivo, however, AP-like responses are unlikely to occur because the cells' resting potential is too depolarized to allow current activation. Thus the absence of electrogenesis in astrocytes may be explained by two mechanisms: 1) a low Na-to-K conductance ratio, as in stellate spinal cord astrocytes and in other previously studied astrocyte preparations; or, 2) as described in detail in the companion paper, a mismatch between the h infinity curve and resting potential, which results in Na+ current inactivation in spinal cord pancake astrocytes.


1994 ◽  
Vol 77 (6) ◽  
pp. 2606-2611 ◽  
Author(s):  
T. P. Doyle ◽  
D. F. Donnelly

Ionic membrane currents are hypothesized to play a major role in determining secretion from carotid body glomus cells, and increased secretion likely mediates the increase in nerve activity in response to hypoxia. The hypothesis that Na+ and K+ channels play an important role in determining secretion and nerve activity was tested by measuring single-fiber afferent nerve activity along with an estimate of free tissue catecholamine using Nafion-covered carbon-fiber micro-electrodes placed in rat carotid bodies in vitro. Baseline and anoxia-stimulated (1 min duration; PO2 of approximately 0 Torr at nadir) levels were quantified. Sham treatment had no significant effect. Tetrodotoxin (2 microns) ablated the nerve activity and reduced peak catecholamine (19.5 +/- 3.1 to 14.5 +/- 3.4 microM; P < 0.05). Cesium (10 microns) had no effect on catecholamine but reduced the nerve response (19.8 +/- 2.7 to 7.8 +/- 2.0 Hz; P < 0.05). 4-Aminopyridine (4 mM) significantly reduced the nerve response (17.2 +/- 3.7 to 4.9 +/- 1.9 Hz; P < 0.05) and increased the baseline (0.9 +/- 0.2 to 3.1 +/- 0.8 microM; P < 0.05) and reduced the peak catecholamine (10.0 to 4.3 +/- 0.8 microM; P < 0.05) levels. These results demonstrate that Na+ and K+ channels play an important role in modulating the secretory and nerve responses. However, channel blockers do not emulate severe hypoxia, suggesting that hypoxia transduction procedes, at least in part, through an alternate pathway.


2020 ◽  
Vol 13 (4) ◽  
pp. 62
Author(s):  
Eiichi Kumamoto

Nociceptive information is transmitted from the periphery to the cerebral cortex mainly by action potential (AP) conduction in nerve fibers and chemical transmission at synapses. Although this nociceptive transmission is largely inhibited at synapses by analgesics and their adjuvants, it is possible that the antinociceptive drugs inhibit nerve AP conduction, contributing to their antinociceptive effects. Many of the drugs are reported to inhibit the nerve conduction of AP and voltage-gated Na+ and K+ channels involved in its production. Compound action potential (CAP) is a useful measure to know whether drugs act on nerve AP conduction. Clinically-used analgesics and analgesic adjuvants (opioids, non-steroidal anti-inflammatory drugs, α2-adrenoceptor agonists, antiepileptics, antidepressants and local anesthetics) were found to inhibit fast-conducting CAPs recorded from the frog sciatic nerve by using the air-gap method. Similar actions were produced by antinociceptive plant-derived chemicals. Their inhibitory actions depended on the concentrations and chemical structures of the drugs. This review article will mention the inhibitory actions of the antinociceptive compounds on CAPs in frog and mammalian peripheral (particularly, sciatic) nerves and on voltage-gated Na+ and K+ channels involved in AP production. Nerve AP conduction inhibition produced by analgesics and analgesic adjuvants is suggested to contribute to at least a part of their antinociceptive effects.


1994 ◽  
Vol 266 (1) ◽  
pp. E39-E43 ◽  
Author(s):  
X. Wang ◽  
T. Inukai ◽  
M. A. Greer ◽  
S. E. Greer

All four different K(+)-channel blockers [tetraethylammonium (TEA), a nonselective K(+)-channel blocker; tolbutamide, an ATP-sensitive K(+)-channel blocker; quinine and 4-aminopyridine, both primarily voltage-dependent K(+)-channel blockers] stimulated prolactin (Prl) secretion by acutely dispersed anterior pituitary cells but had no effect on thyroid-stimulating hormone (TSH) secretion. TEA stimulated Prl secretion in a dose-dependent manner between 1 microM and 20 mM, but even as high as 20 mM, TEA did not induce TSH secretion. Valinomycin (2 microM), a K+ ionophore, inhibited both basal and TEA-induced Prl secretion. TEA-stimulated Prl secretion was abolished by using a Ca(2+)-depleted medium or adding 10 microM dopamine. TEA did not reverse the inhibitory effect of dopamine on thyrotropin-releasing hormone-induced Prl secretion. Our data indicate that K+ channels may play a role in the secretion of adenohypophysial hormones that is idiosyncratic for each hormone. Differences in the role of K+ channels may reflect differences between the various pituitary cell types in plasma membrane ion channel composition, membrane potential, or the mechanism of exocytosis.


Author(s):  
Kazuma Nakagawa

Human ingestion of marine toxins can produce various neurological effects, often involving the voltage-gated Na+ channels that are critical for action potential generation and propagation. Diagnosis for most marine neurotoxin is made clinically, and thus recognizing the signs and symptoms of each toxin, and obtaining the appropriate history, is essential. Major marine neurotoxins-tetrodotoxin, saxitoxin, ciguatoxin, brevetoxin, and domoic acid, have a distinct mechanism and clinical manifestation.


1988 ◽  
Vol 91 (3) ◽  
pp. 317-333 ◽  
Author(s):  
C S Anderson ◽  
R MacKinnon ◽  
C Smith ◽  
C Miller

Charybdotoxin (CTX), a small, basic protein from scorpion venom, strongly inhibits the conduction of K ions through high-conductance, Ca2+-activated K+ channels. The interaction of CTX with Ca2+-activated K+ channels from rat skeletal muscle plasma membranes was studied by inserting single channels into uncharged planar phospholipid bilayers. CTX blocks K+ conduction by binding to the external side of the channel, with an apparent dissociation constant of approximately 10 nM at physiological ionic strength. The dwell-time distributions of both blocked and unblocked states are single-exponential. The toxin association rate varies linearly with the CTX concentration, and the dissociation rate is independent of it. CTX is competent to block both open and closed channels; the association rate is sevenfold faster for the open channel, while the dissociation rate is the same for both channel conformations. Membrane depolarization enhances the CTX dissociation rate e-fold/28 mV; if the channel's open probability is maintained constant as voltage varies, then the toxin association rate is voltage independent. Increasing the external solution ionic strength from 20 to 300 mM (with K+, Na+, or arginine+) reduces the association rate by two orders of magnitude, with little effect on the dissociation rate. We conclude that CTX binding to the Ca2+-activated K+ channel is a bimolecular process, and that the CTX interaction senses both voltage and the channel's conformational state. We further propose that a region of fixed negative charge exists near the channel's CTX-binding site.


Toxicon ◽  
2012 ◽  
Vol 59 (3) ◽  
pp. 402-407 ◽  
Author(s):  
Limei Zhu ◽  
Bin Gao ◽  
Lan Luo ◽  
Shunyi Zhu

Sign in / Sign up

Export Citation Format

Share Document