scholarly journals Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light

2002 ◽  
Vol 205 (24) ◽  
pp. 3845-3856 ◽  
Author(s):  
Rachel Muheim ◽  
Johan Bäckman ◽  
Susanne Åkesson

SUMMARYMagnetic compass orientation in birds has been shown to be light dependent. Results from behavioural studies indicate that magnetoreception capabilities are disrupted under light of peak wavelengths longer than 565 nm, and shifts in orientation have been observed at higher light intensities(43-44×1015 quanta s-1 m-2). To investigate further the function of the avian magnetic compass with respect to wavelength and intensity of light, we carried out orientation cage experiments with juvenile European robins, caught during their first autumn migration,exposed to light of 560.5 nm (green), 567.5 nm (green-yellow) and 617 nm (red)wavelengths at three different intensities (1 mW m-2, 5 mW m-2 and 10 mW m-2). We used monochromatic light of a narrow wavelength range (half bandwidth of 9-11 nm, compared with half bandwidths ranging between 30 nm and 70 nm used in other studies) and were thereby able to examine the magnetoreception mechanism in the expected transition zone between oriented and disoriented behaviour around 565 nm in more detail. We show (1) that European robins show seasonally appropriate migratory directions under 560.5 nm light, (2) that they are completely disoriented under 567.5 nm light under a broad range of intensities, (3) that they are able to orient under 617 nm light of lower intensities, although into a direction shifted relative to the expected migratory one, and (4) that magnetoreception is intensity dependent, leading to disorientation under higher intensities. Our results support the hypothesis that birds possess a light-dependent magnetoreception system based on magnetically sensitive,antagonistically interacting spectral mechanisms, with at least one high-sensitive short-wavelength mechanism and one low-sensitive long-wavelength mechanism.

2001 ◽  
Vol 204 (14) ◽  
pp. 2543-2552 ◽  
Author(s):  
John B. Phillips ◽  
Mark E. Deutschlander ◽  
Michael J. Freake ◽  
S. Chris Borland

SUMMARYTheoretical models implicating specialized photoreceptors in the detection of the geomagnetic field have been the impetus for studying the effects of light on magnetic compass orientation. Magnetic orientation in flies, amphibians and birds has been found to be influenced by light, and in all these groups a shift of approximately 90° in the direction of magnetic compass orientation has been observed under certain wavelengths and/or intensities of light. In the eastern red-spotted newt Notophthalmus viridescens, wavelength-dependent effects of light on magnetic compass orientation appear to result from an antagonistic interaction between short-wavelength (≤450nm) and long-wavelength (≥500nm) photoreception mechanisms. We have demonstrated that at least the short-wavelength input to the newt’s magnetic compass is mediated by extraocular photoreceptors located in or near the pineal organ, and here we present new findings that indicate that the putative long-wavelength mechanism is also associated with pineal photoreceptors. Interestingly, the amphibian pineal organ mediates orientation to both the e-vector of plane-polarized light and the magnetic field. Although the wavelength-dependence of the polarized light orientation in amphibians has not been studied, polarization sensitivity in fishes appears to be mediated by two antagonistic photoreception mechanisms that have similar spectral characteristics to those of the newts’ magnetic compass response. These parallels, along with similarities in the types of receptors that are expected to be involved in light-dependent magnetoreception and polarized light detection, suggest that similar photoreception mechanisms may mediate the light-dependent magnetic and polarized light compasses.


1994 ◽  
Vol 188 (1) ◽  
pp. 275-291 ◽  
Author(s):  
J Phillips ◽  
S Borland

Laboratory experiments were carried out to investigate the effects of varying the wavelength of light on the use of an earth-strength magnetic field for shoreward orientation and for the compass component of homing. In the earlier shoreward orientation experiments, newts tested under full-spectrum and short-wavelength (i.e. 400 and 450 nm) light exhibited shoreward magnetic compass orientation. Under long-wavelength (i.e. 550 and 600 nm) light, newts exhibited magnetic compass orientation that was rotated 90 ° counterclockwise to the shoreward direction. This wavelength-dependent shift in magnetic compass orientation was shown to be due to a direct effect of light on the underlying magnetoreception mechanism. In homing experiments, newts tested under full-spectrum and short-wavelength light exhibited homeward magnetic compass orientation. Under long-wavelength light, newts were randomly distributed with respect to the magnetic field. The different effects of long-wavelength light on shoreward orientation and homing confirmed earlier evidence that different magnetoreception systems mediate these two forms of orientation behaviour. The properties of the newt's homing response are consistent with the use of a hybrid magnetoreception system receiving inputs from the light-dependent magnetic compass and from a non-light-dependent intensity (or inclination) detector which, unlike the compass, is sensitive to the polarity of the magnetic field.


2006 ◽  
Author(s):  
John B. Phillips ◽  
R. Muheim ◽  
N. M. Edgar ◽  
K. S. Sloan

2003 ◽  
Vol 51 (6) ◽  
pp. 597 ◽  
Author(s):  
Wolfgang Wiltschko ◽  
Ursula Munro ◽  
Hugh Ford ◽  
Roswitha Wiltschko

The ability of migratory silvereyes to orient was tested in the geomagnetic field with one eye covered. Silvereyes using only their right eye were able to orient in migratory direction just as well as birds using both eyes. Using only their left eye, however, the birds did not show a significant directional preference. These data indicate that directional information from the magnetic field is mediated almost exclusively by the right eye and processed by the left hemisphere of the brain. Together with corresponding findings from European robins and indications for a similar phenomenon in homing pigeons, they suggest that a strong lateralisation of the magnetic compass is widespread among birds.


Nature ◽  
1993 ◽  
Vol 362 (6422) ◽  
pp. 703-703 ◽  
Author(s):  
Kenneth J. Lohmann

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59212 ◽  
Author(s):  
Caroline M. F. Durif ◽  
Howard I. Browman ◽  
John B. Phillips ◽  
Anne Berit Skiftesvik ◽  
L. Asbjørn Vøllestad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document