Functional significance and physiological regulation of essential trace metals in fish

2021 ◽  
Vol 224 (24) ◽  
Author(s):  
Theanuga Chandrapalan ◽  
Raymond W. M. Kwong

ABSTRACT Trace metals such as iron, copper, zinc and manganese play essential roles in various biological processes in fish, including development, energy metabolism and immune response. At embryonic stages, fish obtain essential metals primarily from the yolk, whereas in later life stages (i.e. juvenile and adult), the gastrointestine and the gill are the major sites for the acquisition of trace metals. On a molecular level, the absorption of metals is thought to occur at least in part via specific metal ion transporters, including the divalent metal transporter-1 (DMT1), copper transporter-1 (CTR1), and Zrt- and Irt-like proteins (ZIP). A variety of other proteins are also involved in maintaining cellular and systemic metal homeostasis. Interestingly, the expression and function of these metal transport- and metabolism-related proteins can be influenced by a range of trace metals and major ions. Increasing evidence also demonstrates an interplay between the gastrointestine and the gill for the regulation of trace metal absorption. Therefore, there is a complex network of regulatory and compensatory mechanisms involved in maintaining trace metal balance. Yet, an array of factors is known to influence metal metabolism in fish, such as hormonal status and environmental changes. In this Review, we summarize the physiological significance of iron, copper, zinc and manganese, and discuss the current state of knowledge on the mechanisms underlying transepithelial metal ion transport, metal–metal interactions, and cellular and systemic handling of these metals in fish. Finally, we identify knowledge gaps in the regulation of metal homeostasis and discuss potential future research directions.

1994 ◽  
Vol 45 (7) ◽  
pp. 1237 ◽  
Author(s):  
AJ Reichelt ◽  
GB Jones

This study has investigated in detail trace metal concentrations in Cleveland Bay in the central Great Barrier Reef and assessed the significant carrier phases of several metals during a simulated disturbance of sediments designed to investigate the effects of dredging. Organic, iron oxide and carbonate phases were shown to be important carrier phases for several trace metals. The application of an acid-leach technique to monitor labile or pollutant concentrations of copper, zinc, lead and nickel in sediments collected from coral reefs sampled before and after two dredging events in 1991 yielded useful information on the fate of dredged sediment. Trace metal contamination close inshore was attributed to port activities, sewage discharge and urbanization.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Roxana T. Shafiee ◽  
Poppy J. Diver ◽  
Joseph T. Snow ◽  
Qiong Zhang ◽  
Rosalind E. M. Rickaby

AbstractAmmonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.


1991 ◽  
Vol 18 (6) ◽  
pp. 893-903 ◽  
Author(s):  
Inderjit Singh ◽  
Donald S. Mavinic

Samples were taken from 72 high-rise apartment suites (6 suites in 12 individual high-rise towers) and 60 single-family houses located within the Greater Vancouver Regional District. The influence of the following factors on trace metal concentrations in 1-L first-flush drinking water samples and “running” hot water samples was investigated: building height, location, plumbing age, type of plumbing, and type of building. Results of this survey show that with the exception of building height, all factors had a correlation with one or more of the trace metals investigated. The trace metals examined were lead, copper, iron, and zinc. Lead was influenced primarily by building type, copper by plumbing age and type of plumbing, and iron by location. Elevated lead levels were associated with high-rise samples. New copper plumbing systems resulted in high copper levels. Highest iron levels in the drinking water were measured in the East Vancouver location. Zinc did not show a distinct correlation with any of the factors investigated. Brass faucets were the primary source of zinc in tap water. They also contributed substantially to the lead detected in the 1-L first-flush sample. Metal concentrations measured in the high-rise and house samples were compared with the U.S. Environmental Protection Agency's (USEPA) maximum contaminant levels (MCLs) and the proposed “no-action” level for lead. In high-rise samples, the 0.01 mg/L “no-action” level proposed for lead was exceeded in 43% of the samples, and 62% of the samples exceeded the current 1.0 mg/L MCL standard for copper. In single-family house samples, these values were 47% and 73%, respectively. The average lead concentrations were 0.020 mg/L for all high-rise samples and 0.013 mg/L for house samples. Regulatory levels stated above would still be exceeded in 6% of the cases for lead and 9% of the cases for copper, even after prolonged flushing of the tap in a high-rise building. In all cases associated with single-family houses, flushing the cold water tap for 5 minutes was successful in achieving compliance levels. Key words: aggressive water, compliance, corrosive, drinking water, first-flush, GVRD, high-rise, single-family house, trace metals, USEPA.


2021 ◽  
Author(s):  
A.A. Yamskikh ◽  
L.A. Ivanova

The article describes the reactions of glycine synthesis with alkaline, alkaline-earth and divalent 3-d metals, which were carried out during the experiment. Hydroxides or sulfates of lithium, magnesium, calcium, manganese, iron, copper, zinc, cobalt and sodium were used as reagents for the synthesis. The physicochemical properties of the obtained compounds were studied. Keywords: chelates, glycinates of alkaline and alkaline earth metals, glycinates of divalent 3-d metals.


2012 ◽  
Vol 7 (11) ◽  
pp. 1110-1119 ◽  
Author(s):  
Zhijun Hou ◽  
Meiying Shen ◽  
Hongliang Chai ◽  
Jianzhang Ma ◽  
Yuping Hua
Keyword(s):  

2018 ◽  
Vol 13 (3) ◽  
pp. 612-620
Author(s):  
Filipe Sousa dos Santos ◽  
Eduarda Medran Rangel ◽  
Pedro José Sanches Filho

Abstract Determination of trace metals was carried out in Mangueira Lagoon, in the southern zone of Rio Grande do Sul. Samples were collected at five points to evaluate the concentrations of the following trace metals: copper, zinc, lead, chromium, nickel and iron. Metals were determined by digestion with concentrated nitric acid and pre-concentrated in Chelex 100 resin analyzed by atomic absorption spectrophotometry. In parallel, the physical-chemical parameters pH, chlorides, alkalinity, hardness and organic matter in the water were determined. Potassium and sodium metals were analyzed by atomic emission spectrometry. The analyzes of pH and conductance were analyzed in the field while the others were done in the laboratory of the research group of environmental contaminants (GPCA). Through the results of physical-chemical parameters of the water, the Mangueira Lagoon exhibits a low degree of contamination, but in the future may compromise the biota of the lagoon. Regarding the focus of this work, of Cu, Cr, Fe, Ni, Pb, and Zn (heavy metals), only lead and iron obtained the values above that are established in CONAMA 357/2005.


Sign in / Sign up

Export Citation Format

Share Document