Somatosensory Potentials in Humans Evoked by Both Mechanical Stimulation of the Skin and Electrical Stimulation of the Nerve

Author(s):  
H. Pratt ◽  
R. N. Amlie ◽  
A. Starr
1990 ◽  
Vol 63 (5) ◽  
pp. 1118-1127 ◽  
Author(s):  
L. Villanueva ◽  
K. D. Cliffer ◽  
L. S. Sorkin ◽  
D. Le Bars ◽  
W. D. Willis

1. Recordings were made in anesthetized monkeys from neurons in the medullary reticular formation (MRF) caudal to the obex. Responses of 19 MRF neurons to mechanical, thermal, and/or electrical stimulation were examined. MRF neurons exhibited convergence of nociceptive cutaneous inputs from widespread areas of the body and face. 2. MRF neurons exhibited low levels of background activity. Background activity increased after periods of intense cutaneous mechanical or thermal stimulation. Nearly all MRF neurons tested failed to respond to heterosensory stimuli (flashes, whistle sounds), and none responded to joint movements. 3. MRF neurons were excited by and encoded the intensity of noxious mechanical stimulation. Responses to stimuli on contralateral limbs were greater than those to stimuli on ipsilateral limbs. Responses were greater to stimuli on the forelimbs than to stimuli on the hindlimbs. 4. MRF neurons responded to noxious thermal stimulation (51 degrees C) of widespread areas of the body. Mean responses from stimulation at different locations were generally parallel to those for noxious mechanical stimulation. Responses increased with intensity of noxious thermal stimulation (45-50 degrees C). 5. MRF neurons responded with one or two peaks of activation to percutaneous electrical stimulation applied to the limbs, the face, or the tail. The differences in latency of responses to stimulating two locations along the tail suggested that activity was elicited by activation of peripheral fibers with a mean conduction velocity in the A delta range. Stimulation of the contralateral hindlimb elicited greater responses, with lower thresholds and shorter latencies, than did stimulation of the ipsilateral hindlimb. 6. Electrophysiological properties of monkey MRF neurons resembled those of neurons in the medullary subnucleus reticularis dorsalis (SRD) in the rat. Neurons in the caudal medullary reticular formation could play a role in processing nociceptive information. Convergence of nociceptive cutaneous input from widespread areas of the body suggests that MRF neurons may contribute to autonomic, affective, attentional, and/or sensory-motor processes related to pain.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 501
Author(s):  
Seunghyeon Yun ◽  
Chin Su Koh ◽  
Jungmin Seo ◽  
Shinyong Shim ◽  
Minkyung Park ◽  
...  

Spinal cord stimulation is a therapy to treat the severe neuropathic pain by suppressing the pain signal via electrical stimulation of the spinal cord. The conventional metal packaged and battery-operated implantable pulse generator (IPG) produces electrical pulses to stimulate the spinal cord. Despite its stable operation after implantation, the implantation site is limited due to its bulky size and heavy weight. Wireless communications including wireless power charging is also restricted, which is mainly attributed to the electromagnetic shielding of the metal package. To overcome these limitations, here, we developed a fully implantable miniaturized spinal cord stimulator based on a biocompatible liquid crystal polymer (LCP). The fabrication of electrode arrays in the LCP substrate and monolithically encapsulating the circuitries using LCP packaging reduces the weight (0.4 g) and the size (the width, length, and thickness are 25.3, 9.3, and 1.9 mm, respectively). An inductive link was utilized to wirelessly transfer the power and the data to implanted circuitries to generate the stimulus pulse. Prior to implantation of the device, operation of the pulse generator was evaluated, and characteristics of stimulation electrode such as an electrochemical impedance spectroscopy (EIS) were measured. The LCP-based spinal cord stimulator was implanted into the spared nerve injury rat model. The degree of pain suppression upon spinal cord stimulation was assessed via the Von Frey test where the mechanical stimulation threshold was evaluated by monitoring the paw withdrawal responses. With no spinal cord stimulation, the mechanical stimulation threshold was observed as 1.47 ± 0.623 g, whereas the stimulation threshold was increased to 12.7 ± 4.00 g after spinal cord stimulation, confirming the efficacy of pain suppression via electrical stimulation of the spinal cord. This LCP-based spinal cord stimulator opens new avenues for the development of a miniaturized but still effective spinal cord stimulator.


1969 ◽  
Vol 51 (2) ◽  
pp. 387-396
Author(s):  
I. D. MCFARLANE

1. Electrical activity has been recorded from the sphincter region of Calliactis parasitica during the behavioural sequence in which the anemone detaches from the substrate and attaches to a Buccinum shell. The ectodermal slow-conduction system (SS1) fires repetitively, the majority of observed pulses occurring in the period prior to detachment (a typical example is 25 SS1pulses at an average frequency of 1 pulse/7 sec.). Shell-tentacle contact is essential for stimulation of SS1activity. 2. Mechanical stimulation of the column excites the SS1, and 30 stimuli at a frequency of about one shock/5 sec. give pedal disk detachment. 3. Electrical stimulation of the ectoderm excites the SS1and about 30 stimuli at frequencies between one shock/3 sec. and one shock/9 sec. produce detachment. Detachment and the SS1 have an identical stimulus threshold. It is concluded that detachment is co-ordinated by the SS1.


2000 ◽  
Vol 83 (6) ◽  
pp. 3209-3216 ◽  
Author(s):  
Jean-François Perrier ◽  
Boris Lamotte D'Incamps ◽  
Nezha Kouchtir-Devanne ◽  
Léna Jami ◽  
Daniel Zytnicki

The postsynaptic potentials elicited in peroneal motoneurons by either mechanical stimulation of cutaneous areas innervated by the superficial peroneal nerve (SP) or repetitive electrical stimulation of SP were compared in anesthetized cats. After denervation of the foot sparing only the territory of SP terminal branches, reproducible mechanical stimulations were applied by pressure on the plantar surface of the toes via a plastic disk attached to a servo-length device, causing a mild compression of toes. This stimulus evoked small but consistent postsynaptic potentials in every peroneal motoneuron. Weak stimuli elicited only excitatory postsynaptic potentials (EPSPs), whereas increase in stimulation strength allowed distinction of three patterns of response. In about one half of the sample, mechanical stimulation or trains of 20/s electric pulses at strengths up to six times the threshold of the most excitable fibers in the nerve evoked only EPSPs. Responses to electrical stimulation appeared with 3–7 ms central latencies, suggesting oligosynaptic pathways. In another, smaller fraction of the sample, inhibitory postsynaptic potentials (IPSPs) appeared with an increase of stimulation strength, and the last fraction showed a mixed pattern of excitation and inhibition. In 24 of 32 motoneurons where electrical and mechanical effects could be compared, the responses were similar, and in 6 others, they changed from pure excitation on mechanical stimulation to mixed on electrical stimulation. With both kinds of stimulation, stronger stimulations were required to evoke inhibitory postsynaptic potentials (IPSPs), which appeared at longer central latencies than EPSPs, indicating longer interneuronal pathways. The similarity of responses to mechanical and electrical stimulation in a majority of peroneal motoneurons suggests that the effects of commonly used electrical stimulation are good predictors of the responses of peroneal motoneurons to natural skin stimulation. The different types of responses to cutaneous afferents from SP territory reflect a complex connectivity allowing modulations of cutaneous reflex responses in various postures and gaits.


1975 ◽  
Vol 38 (1) ◽  
pp. 132-145 ◽  
Author(s):  
R. D. Foreman ◽  
A. E. Applebaum ◽  
J. E. Beall ◽  
D. L. Trevino ◽  
W. D. Willis

The responses of spinothalamic tract neurons were studied by extra- and intracellular recordings from the lumbosacral spinal cord in anesthetized rhesus monkeys (Macaca mulatta). The neurons were identified by antidromic activation from the contralateral diencephalon. They were then classified by the mildest form of mechanical stimulation applied to the ipsilateral hindlimb. The effects of electrical stimulation of the nerve(s) supplying the receptive field were investigated. Graded electrical stimulation revealed that the threshold responses of spinothalamic tract neurons excited by weak mechanical stimuli occurred when the largest afferent fibers were activated. On the other hand, neurons that required intense mechanical stimulation for their excitation tended to have higher thresholds to electrical stimulation. Some spinothalamic tract cells were shown to receive monosynaptic excitatory connections from peripheral nerve fibers, although polysynaptic connections may generally be more important. An input from unmyelinated afferent fibers was demonstrated. It is concluded the primate spinothalamic tract neurons receive a rich convergent input from a variety of cutaneous receptors. The experiments provide some evidence for the most likely types of receptors.


1971 ◽  
Vol 55 (2) ◽  
pp. 409-420
Author(s):  
GEORGE M. HUGHES

1. Studies have been made of the patterns of parapodial innervation in Aplysia fasciata and A. depilans using electrophysiological methods. 2. Sensory fibres are chiefly found in the main parapodial nerves. The areas innervated by these nerves overlap somewhat and such overlapping extends to the branches of individual parapodial nerves. 3. Responses to mechanical stimulation of the parapodial surface gives rise to varying sizes of spike, the smaller spikes being usually more slowly adapting, the larger being highly phasic. 4. Although the general pattern of innervation is common to all specimens there are wide variations in detail. 5. Electrical stimulation of parapodial nerves produces mechanical contractions which are associated with responses in some of the sensory fibres. Usually the afferent units which are stimulated in this way have sensory fields within overlapping areas supplied by the two branches. Such proprioceptive feedback responses usually declined with repetition.


1983 ◽  
Vol 49 (3) ◽  
pp. 649-661 ◽  
Author(s):  
K. D. Kniffki ◽  
K. Mizumura

1. The responses evoked by electrical stimulation of cutaneous and muscle nerves, by noxious and innocuous mechanical stimulation of muscle, tendon, and cutaneous tissues, and by intra-arterial (ia) injection of algesic substances (potassium, bradykinin) into arteries supplying the gastrocnemius-soleus muscle (GS) were studied in single neurons located in the ventroposterolateral nucleus (VPL) and in the transitional zone between VPL and the ventrolateral nucleus (VL) of cats lightly anesthetized with thiopenthal. Such chemical stimulation of the muscles has been shown to activate muscular groups III and IV axons specifically (43, 44) and presumably is nociceptive in character (14, 17, 31). 2. One hundred eight neurons were tested. Eighty-three of the units responded only to various types of cutaneous stimulation of the hindlimb. The other 25 responded to algesic stimulation of muscle and/or tendon. Of these latter 25, 7 had no apparent cutaneous receptive field although 4 of them responded to electrical stimulation of the common peroneal and/or sural nerve. Thus, only three neurons responded exclusively to algesic chemical and noxious mechanical stimulation of the muscle. Of the other 18 neurons, 14 had cutaneous receptive fields restricted to the hindlimb and often responded to non-noxious repetitive light stroking and to noxious pinching with a high-frequency discharge. Four cells (two of which had cutaneous input only from low-threshold mechanoreceptors) had complex and large receptive fields extending to more than one limb. 3. Potassium was a more potent muscle receptor stimulant than bradykinin, the latter only weakly exciting 3 neurons of 24 tested with both substances. The responses to potassium were rapid (approximately 4.0 s in latency) and tended to be greater (have higher response rates) for the units that responded to cutaneous as well as muscle/tendon stimulation. 4. Most neurons that responded to noxious deep stimulation had a threshold for the GS nerve volley in the group III fiber range. The few neurons with thresholds slightly below the group III range did not respond to activation of group I or II muscle spindle afferents by intra-arterial application of succinylcholine or by stretching the muscle. 5. Neurons with responses to any of the muscle, tendon, or cutaneous nociceptive stimuli were located at the ventral and dorsal periphery of VPL and in the VPL-VL transitional zone. 6. These results strongly suggest that there exist regions within the lateral diencephalon of cats that are capable of processing nociceptive information and that these regions are located at the periphery of VPL.


1992 ◽  
Vol 169 (1) ◽  
pp. 181-206 ◽  
Author(s):  
DANIEL CATTAERT ◽  
JEAN-YVES BARTHE ◽  
DOUGLAS M. NEIL ◽  
FRANCOIS CLARAC

1. An isolated preparation of the crayfish nervous system, comprising both the thoracic and the abdominal ganglia together with their nerve roots, has been used to study the influence of a single leg proprioceptor, the coxo-basal chordotonal organ (CBCO), on the fictive swimmeret beating consistently expressed in this preparation. Both mechanical stimulation of the CBCO and electrical stimulation of its nerve were used. 2. In preparations not displaying rhythmic activity, electrical or mechanical stimulations evoked excitatory postsynaptic potentials (EPSPs) in about 30 % of the studied motor neurones with a fairly short and regular delay, suggesting an oligosynaptic pathway. Such stimulation could evoke rhythmic activity in swimmeret motor nerves. The evoked swimmeret rhythm often continued for several seconds after the stimulus period. 3. When the swimmeret rhythm was well established, electrical and mechanical stimuli modified it in a number of ways. Limited mechanical or weak electrical stimuli produced a small increase in swimmeret beat frequency, while more extreme movements of the CBCO or strong electrical stimuli had a disruptive effect on the rhythm. 4. The effect of low-intensity stimulation on existing swimmeret beating was phase-dependent: it shortened the beat cycle when applied during the powerstroke phase and lengthened it when applied during the retumstroke phase. 5. Rhythmic mechanical stimulation of CBCO or electrical stimulation of the CBCO nerve entrained the swimmeret rhythm within a limited range in relative or absolute coordination. Note: To whom reprint requests should be sent.


Sign in / Sign up

Export Citation Format

Share Document