Inhibition and Excitation in the Locust DCMD Receptive Field: Spatial Frequency, Temporal and Spatial Characteristics

1979 ◽  
Vol 80 (1) ◽  
pp. 191-216
Author(s):  
ROBERT B. PINTER

1. The descending contralateral movement detector (DCMD) of the locust responds vigorously to small target (ca. 5°) stimuli; this response is inhibited by simultaneous or subsequent rotation of a radial grating (windmill) pattern (subtending 19-90° of visual angle) and suppressed by earlier rotation. 2. The excitation produced in the DCMD by rotation of a radial grating pattern depends only on the spatial frequency of the stripes of the pattern, and is independent of pattern size, and of temporal frequency over the range of low values used. 3. The inhibition produced by this same stimulus similarly depends only on the spatial frequency of the stripes of the pattern, independent of pattern size, and of temporal frequency over the range of low values used. 4. As the radial grating excitation decreases with increasing spatial frequency, the inhibition increases until limited by optical and neural resolution. 5. For spatial frequencies of the radial grating pattern below 0.05 cyc/deg the radial grating patterns become excitatory. Above 0.05 cyc/deg they are inhibitory. This is the point in spatial frequency below which inhibitory grating ‘backgrounds’ become excitatory targets. 6. Inhibition decreases as the size of the radial grating pattern is decreased below 190 visual angle; at 8° or less no inhibition can be found at any spatial frequency. 7. Inhibition is greater in the posterior than anterior regions of the receptive field, and greater in the ventral than the dorsal regions. 8. Inhibition decreases as the distance between small target and the radial grating is increased, but this is influenced by the local variations of excitation and inhibition. 9. Habituation is often greater for small target and low-frequency radial grating response than for inhibited small target and high frequency grating response. 10. These results substantiate previously proposed lateral inhibition models of the acridid movement detector system.

2005 ◽  
Vol 55 (3) ◽  
pp. 245-258 ◽  
Author(s):  
◽  
◽  
◽  

AbstractFlickering light can cause adverse effects in some humans, as can rhythmic spatial patterns of particular frequencies. We investigated whether birds react to the temporal frequency of standard 100 Hz fluorescent lamps and the spatial frequency of the visual surround in the manner predicted by the human literature, by examining their effects on the preferences, behaviour and plasma corticosterone of European starlings (Sturnus vulgaris). We predicted that high frequency lighting (> 30 kHz) and a relatively low spatial frequency on the walls of their cages (0.1 cycle cm−1) would be less aversive than low frequency lighting (100 Hz) and a relatively high spatial frequency (2.5 cycle cm−1). Birds had strong preferences for both temporal and spatial frequencies. These preferences did not always fit with predictions, although there was evidence that 100 Hz was more stressful than 30 kHz lighting, as birds were less active and basal corticosterone levels were higher under 100 Hz lighting. Our chosen spatial frequencies had no overall significant effect on corticosterone levels. Although there are clearly effects of, and interactions between, the frequency of the light and the visual surround on the behaviour and physiology of birds, the pattern of results is not straightforward.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 12-12
Author(s):  
P J Bex ◽  
F A J Verstraten ◽  
I Mareschal

The motion aftereffect (MAE) was used to study the temporal-frequency and spatial-frequency selectivity of the visual system at suprathreshold contrasts. Observers adapted to drifting sine-wave gratings of a range of spatial and temporal frequencies. The magnitude of the MAE induced by the adaptation was measured with counterphasing test gratings of a variety of spatial and temporal frequencies. Independently of the spatial or temporal frequency of the adapting grating, the largest MAE was found with slowly counterphasing test gratings (∼0.125 – 0.25 Hz). For slowly counterphasing test gratings (<∼2 Hz), the largest MAEs were found when the test grating was of similar spatial frequency to that of the adapting grating, even at very low spatial frequencies (0.125 cycle deg−1). However, such narrow spatial frequency tuning was lost when the temporal frequency of the test grating was increased. The data suggest that MAEs are dominated by a single, low-pass temporal-frequency mechanism and by a series of band-pass spatial-frequency mechanisms at low temporal frequencies. At higher test temporal frequencies, the loss of spatial-frequency tuning implicates separate mechanisms with broader spatial frequency tuning.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 94-94
Author(s):  
B Lee ◽  
B J Rogers

Narrow-band-filtered random-dot stereograms were used to determine stereo thresholds for detecting sinusoidal disparity modulations. These stereograms were designed to stimulate selectively channels tuned to luminance and corrugation spatial frequencies (Schumer and Ganz, 1979 Vision Research19 1303 – 1314). Thresholds were determined for corrugation frequencies ranging from 0.125 to 1 cycle deg−1, luminance centre spatial frequencies ranging from 1 to 8 cycles deg−1 and disparity pedestal sizes ranging from −32 to +32 min arc. For small disparity pedestals, lowest modulation thresholds were found around 0.5 cycle deg−1 corrugation frequency and 4 cycles deg−1 luminance centre spatial frequency. For large disparity pedestals (±32 arc min), lowest thresholds were shifted towards the lower corrugation frequencies (0.125 cycle deg−1) and lower luminance frequencies (2 cycles deg−1). There was a significant interaction between luminance spatial frequency and disparity pedestal size. For small pedestals, lowest thresholds were found with the highest luminance frequency pattern (4 cycles deg−1). For large pedestals, best performance shifted towards the low-frequency patterns (1 cycle deg−1). This effect demonstrates a massive reduction in stereo-efficiency for high-frequency patterns in the luminance domain at large disparity pedestals which is consistent with the ‘size-disparity relation’ proposed by previous researchers.


Perception ◽  
1997 ◽  
Vol 26 (8) ◽  
pp. 1047-1058 ◽  
Author(s):  
Howard C Hughes ◽  
David M Aronchick ◽  
Michael D Nelson

It has previously been observed that low spatial frequencies (≤ 1.0 cycles deg−1) tend to dominate high spatial frequencies (≥ 5.0 cycles deg−1) in several types of visual-information-processing tasks. This earlier work employed reaction times as the primary performance measure and the present experiments address the possibility of low-frequency dominance by evaluating visually guided performance of a completely different response system: the control of slow-pursuit eye movements. Slow-pursuit gains (eye velocity/stimulus velocity) were obtained while observers attempted to track the motion of a sine-wave grating. The drifting gratings were presented on three types of background: a uniform background, a background consisting of a stationary grating, or a flickering background. Low-frequency dominance was evident over a wide range of velocities, in that a stationary high-frequency component produced little disruption in the pursuit of a drifting low spatial frequency, but a stationary low frequency interfered substantially with the tracking of a moving high spatial frequency. Pursuit was unaffected by temporal modulation of the background, suggesting that these effects are due to the spatial characteristics of the stationary grating. Similar asymmetries were observed with respect to the stability of fixation: active fixation was less stable in the presence of a drifting low frequency than in the presence of a drifting high frequency.


Perception ◽  
1986 ◽  
Vol 15 (3) ◽  
pp. 249-258 ◽  
Author(s):  
Clifton M Schor ◽  
Peter A Howarth

Thresholds for stereoscopic-depth perception increase with decreasing spatial frequency below 2.5 cycles deg−1. Despite this variation of stereo threshold, suprathreshold stereoscopic-depth perception is independent of spatial frequency down to 0.5 cycle deg-1. Below this frequency the perceived depth of crossed disparities is less than that stimulated by higher spatial frequencies which subtend the same disparities. We have investigated the effects of contrast fading upon this breakdown of stereo-depth invariance at low spatial frequencies. Suprathreshold stereopsis was investigated with spatially filtered vertical bars (difference of Gaussian luminance distribution, or DOG functions) tuned narrowly over a broad range of spatial frequencies (0.15–9.6 cycles deg−1). Disparity subtended by variable width DOGs whose physical contrast ranged from 10–100% was adjusted to match the perceived depth of a standard suprathreshold disparity (5 min visual angle) subtended by a thin black line. Greater amounts of crossed disparity were required to match broad than narrow DOGs to the apparent depth of the standard black line. The matched disparity was greater at low than at high contrast levels. When perceived contrast of all the DOGs was matched to standard contrasts ranging from 5–72%, disparity for depth matches became similar for narrow and broad DOGs. 200 ms pulsed presentations of DOGs with equal perceived contrast further reduced the disparity of low-contrast broad DOGs needed to match the standard depth. A perceived-depth bias in the uncrossed direction at low spatial frequencies was noted in these experiments. This was most pronounced for low-contrast low-spatial-frequency targets, which actually needed crossed disparities to make a depth match to an uncrossed standard. This bias was investigated further by making depth matches to a zero-disparity standard (ie the apparent fronto-parallel plane). Broad DOGs, which are composed of low spatial frequencies, were perceived behind the fixation plane when they actually subtended zero disparity. The magnitude of this low-frequency depth bias increased as contrast was reduced. The distal depth bias was also perceived monocularly, however, it was always greater when viewed binocularly. This investigation indicates that contrast fading of low-spatial-frequency stimuli changes their perceived depth and enhances a depth bias in the uncrossed direction. The depth bias has both a monocular and a binocular component.


1986 ◽  
Vol 56 (4) ◽  
pp. 969-986 ◽  
Author(s):  
M. C. Morrone ◽  
M. Di Stefano ◽  
D. C. Burr

Neurons in the posteromedial lateral suprasylvian cortex (PMLS) of cats were recorded extracellularly to investigate their response to stimulation by bars and by sinusoidal gratings. Two general types of cells were identified: those that modulated in synchrony with the passage of drifting bars and gratings and those that responded with an unmodulated increase in discharge. Both types responded to contrast reversed gratings with a modulation of activity: the cells that modulated to drifting gratings modulated to the first harmonic of contrast reversed gratings (at appropriate spatial phase and frequency), whereas those that did not modulate to drifting gratings always modulated to the second harmonic of contrast reversed gratings. No cell had a clear null point. Nearly all cells were selective for spatial frequency. The preferred frequency ranged from 0.1 to 1 cycles per degree (cpd), and selectivity bandwidths (full width at half height) were around two octaves. Preferred spatial frequency was not correlated with receptive field size, but bandwidth and receptive field size were positively correlated. Preferred spatial frequency decreased with eccentricity, at about 0.05 octaves/deg. The response of all cells increased as a function of grating contrast up to a saturation level. The contrast threshold for response to a grating of optimal parameters was approximately 1% for most cells and the saturation contrast approximately 10%. The contrast gain was approximately 25 spikes/s per log unit of contrast. All cells were tuned for temporal frequency, preferring frequencies from approximately 3 to 10 Hz, with a selectivity bandwidth approximately 2 octaves. For some cells, the spatial selectivity did not depend on the temporal frequency and vice versa. Others were spatiotemporally coupled, with the preferred temporal frequency being lower at high than at low spatial frequencies, and the preferred spatial frequency lower at high than at low temporal frequencies. Previous results showing broad velocity tuning to a bar were replicated and found to be predictable from the combined spatial and temporal tuning of PMLS cells and the Fourier spectrum of a bar. Preferred temporal frequency steadily decreased with eccentricity, at 0.025 octaves/deg. The results for PMLS cells are compared with those of other visual areas. Acuity and spatial preference and selectivity bandwidth is comparable to all areas except area 17, where they are a factor of about two higher. Temporal selectivity in PMLS is as fine as observed in other areas. The possibility that PMLS cells may be involved with motion detection and detection of motion in depth is discussed.


1989 ◽  
Vol 62 (2) ◽  
pp. 544-557 ◽  
Author(s):  
C. Casanova ◽  
R. D. Freeman ◽  
J. P. Nordmann

1. We have studied response properties of single cells in the striate-recipient zone of the cat's lateral posterior-pulvinar (LP-P) complex. This zone is in the lateral section of the lateral posterior nucleus (LP1). Our purpose was to determine basic response characteristics of these cells and to investigate the possibility that the LP-P complex is a center of integration that is dominated by input from visual cortex. 2. The majority (72%) of cells in the striate-recipient zone respond to drifting sinusoidal gratings with unmodulated discharge. 3. Cells in the LP1 are selective to the orientation of gratings, and tuning functions have a mean bandwidth of 31 degrees. More than one-half of these units are direction-selective. The preferred orientation and the tuning widths for the two eyes are generally well matched. However, a few cells exhibited the interesting property of opposite preferred directions for the two eyes. Orientation tuning for a small group of cells was different for the mean discharge and first harmonic components, suggesting a convergence from different inputs to these cells. 4. Two-thirds of LP1 cells are tuned to low spatial frequencies (less than 0.5 c/deg). The tuning is broad with a mean bandwidth of 2.2 octaves. The remaining one-third of the units are low-pass because they show no attenuation of their responses to low spatial frequencies. Both eyes exhibit the same spatial frequency preference and the same spatial frequency tuning. There is a high correlation between spatial frequency and orientation selectivities. 5. All cells tested are tuned for temporal frequency with a sharp attenuation for low frequencies. The optimal values range between 4 and 8 Hz, and the mean bandwidth is 2.2 octaves. 6. Cells in LP1 are mostly binocular. When monocular, cells are almost always contralaterally driven. Dichoptic presentation of gratings reveals the presence of strong binocular interaction. In almost all cases, these interactions are phase specific. The cell's discharge is facilitated at particular phases and inhibited at phases 180 degrees away. These binocular interactions are orientation dependent. 7. Twenty-five percent of the cells with phase-specific binocular facilitation appear to be monocular when each eye is tested separately. For three cells, we observed a non-phase-specific inhibitory effect of the silent eye. 8. Our findings indicate that LP1 cells form a relatively homogeneous group, suggesting a high degree of integration of multiple cortical inputs.(ABSTRACT TRUNCATED AT 400 WORDS)


Perception ◽  
1989 ◽  
Vol 18 (5) ◽  
pp. 639-648 ◽  
Author(s):  
Victor Klymenko ◽  
Naomi Weisstein

The figure – ground organization of an ambiguous bipartite pattern in which the two regions of the pattern contained sine-wave gratings which differed in spatial frequency was examined for two pairs of spatial frequencies: 1 and 4 cycles deg−1, and 1 and 8 cycles deg−1. The region of higher spatial frequency underwent contrast reversal at one of four rates: 0, 3.75, 7.5, or 15 Hz. The region of lower spatial frequency was equated with either the temporal frequency or the velocity of the grating of higher spatial frequency in three sets of conditions: one stationary condition, three in which temporal frequency was equated, and three in which velocity was equated. For the 1 and 4 cycles deg−1 pair, the region of lower spatial frequency tended to be seen as the background a higher percentage of the time. There were significant linear trends for the appearance as background of the region of lower spatial frequency with respect to the magnitude of the velocity difference between the two regions of the pattern. The faster the 1 cycle deg−1 grating moved with respect to the 4 cycles deg−1 grating, the higher the percentage of the time it was seen as the ground. The results for the 1 and 8 cycles deg−1 pair were in some cases unexpected in that the 8 cycles deg−1 grating was seen as the ground behind the 1 cycle deg−1 grating even though it was of a higher spatial frequency and moved at a slower velocity. The spatiotemporal tuning of the visual system is discussed.


Perception ◽  
1980 ◽  
Vol 9 (5) ◽  
pp. 577-580 ◽  
Author(s):  
David Rose

Binocular sensitivity to the movement or flicker visible in a phase-reversing grating pattern is higher by a factor of about 1·7 to 2·0 compared with monocular sensitivity, at low rates of phase reversal. This factor decreases as the temporal frequency of the phase reversal increases, especially above 10 Hz. For different observers, the ratio may be higher or lower overall with gratings of spatial frequency 5 cycles deg−1 than with 0·5 cycle deg−1 gratings.


1996 ◽  
Vol 8 (3) ◽  
pp. 197-230 ◽  
Author(s):  
Howard C. Hughes ◽  
George Nozawa ◽  
Frederick Kitterle

A great deal of evidence suggests that early in processing, retinal images are filtered by parallel, spatial frequency selective channels. We attempt to incorporate this view of early vision with the principle of global precedence, which holds that Gestalt-like processes sensitive to global image configurations tend to dominate local feature processing in human pattern perception. Global precedence is inferred from the pattern of reaction times observed when visual patterns contain multiple cues at different levels of spatial scale. Specifically, it is frequently observed that global processing times are largely unaffected by conflicting local cues, but local processing times are substantially lengthened by conflicting global cues. The asymmetry of these effects suggests the dominant role of global configurations. Since global spatial information is effectively represented by low spatial frequencies, global precedence potentially implies a low frequency dominance. The thesis is that low spatial frequencies tend to be available before information carried by higher frequency bands, producing a coarse-to-fine temporal order in visual spatial perception. It is suggested that a variety of factors contribute to the “prior entry” of low frequency information, including the high contrast gain of the magnocellular pathway, the amplitude spectra typical of natural images, and inhibitory interactions between the parallel frequency-tuned channels. Evidence suggesting a close relationship between global precedence and spatial frequency channels is provided by observations that the essential features of the global precedence effect are obtained using patterns consisting of low and high frequency sinusoids. The hypothesis that these asymmetric interference effects are due to interactions between parallel spatial channels is supported by an analysis of reaction times (RTs), which shows that RTs to redundant low and high frequency cues produce less facilitation than predictions that assume the channels are independent. In view of previous work showing that global precedence depends upon the low frequency content of the stimuli, we suggest that low spatial frequencies represent the sine qua non for the dominance of configurational cues in human pattern perception, and that this configurational dominance reflects the microgenesis of visual pattern perception. This general view of the temporal dynamics of visual pattern recognition is discussed, is considered from an evolutionary perspective, and is related to certain statistical regularities in natural scenes. Potential adaptive advantages of an interactive parallel architecture that confers an initial processing advantage to low resolution information are explored.


Sign in / Sign up

Export Citation Format

Share Document