Suprathreshold Stereo-Depth Matches as a Function of Contrast and Spatial Frequency

Perception ◽  
1986 ◽  
Vol 15 (3) ◽  
pp. 249-258 ◽  
Author(s):  
Clifton M Schor ◽  
Peter A Howarth

Thresholds for stereoscopic-depth perception increase with decreasing spatial frequency below 2.5 cycles deg−1. Despite this variation of stereo threshold, suprathreshold stereoscopic-depth perception is independent of spatial frequency down to 0.5 cycle deg-1. Below this frequency the perceived depth of crossed disparities is less than that stimulated by higher spatial frequencies which subtend the same disparities. We have investigated the effects of contrast fading upon this breakdown of stereo-depth invariance at low spatial frequencies. Suprathreshold stereopsis was investigated with spatially filtered vertical bars (difference of Gaussian luminance distribution, or DOG functions) tuned narrowly over a broad range of spatial frequencies (0.15–9.6 cycles deg−1). Disparity subtended by variable width DOGs whose physical contrast ranged from 10–100% was adjusted to match the perceived depth of a standard suprathreshold disparity (5 min visual angle) subtended by a thin black line. Greater amounts of crossed disparity were required to match broad than narrow DOGs to the apparent depth of the standard black line. The matched disparity was greater at low than at high contrast levels. When perceived contrast of all the DOGs was matched to standard contrasts ranging from 5–72%, disparity for depth matches became similar for narrow and broad DOGs. 200 ms pulsed presentations of DOGs with equal perceived contrast further reduced the disparity of low-contrast broad DOGs needed to match the standard depth. A perceived-depth bias in the uncrossed direction at low spatial frequencies was noted in these experiments. This was most pronounced for low-contrast low-spatial-frequency targets, which actually needed crossed disparities to make a depth match to an uncrossed standard. This bias was investigated further by making depth matches to a zero-disparity standard (ie the apparent fronto-parallel plane). Broad DOGs, which are composed of low spatial frequencies, were perceived behind the fixation plane when they actually subtended zero disparity. The magnitude of this low-frequency depth bias increased as contrast was reduced. The distal depth bias was also perceived monocularly, however, it was always greater when viewed binocularly. This investigation indicates that contrast fading of low-spatial-frequency stimuli changes their perceived depth and enhances a depth bias in the uncrossed direction. The depth bias has both a monocular and a binocular component.

Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 94-94
Author(s):  
B Lee ◽  
B J Rogers

Narrow-band-filtered random-dot stereograms were used to determine stereo thresholds for detecting sinusoidal disparity modulations. These stereograms were designed to stimulate selectively channels tuned to luminance and corrugation spatial frequencies (Schumer and Ganz, 1979 Vision Research19 1303 – 1314). Thresholds were determined for corrugation frequencies ranging from 0.125 to 1 cycle deg−1, luminance centre spatial frequencies ranging from 1 to 8 cycles deg−1 and disparity pedestal sizes ranging from −32 to +32 min arc. For small disparity pedestals, lowest modulation thresholds were found around 0.5 cycle deg−1 corrugation frequency and 4 cycles deg−1 luminance centre spatial frequency. For large disparity pedestals (±32 arc min), lowest thresholds were shifted towards the lower corrugation frequencies (0.125 cycle deg−1) and lower luminance frequencies (2 cycles deg−1). There was a significant interaction between luminance spatial frequency and disparity pedestal size. For small pedestals, lowest thresholds were found with the highest luminance frequency pattern (4 cycles deg−1). For large pedestals, best performance shifted towards the low-frequency patterns (1 cycle deg−1). This effect demonstrates a massive reduction in stereo-efficiency for high-frequency patterns in the luminance domain at large disparity pedestals which is consistent with the ‘size-disparity relation’ proposed by previous researchers.


Perception ◽  
1982 ◽  
Vol 11 (6) ◽  
pp. 707-720 ◽  
Author(s):  
Robert A Smith

The hypothesis that visual size is determined from the low-frequency Fourier spectrum of the image has been tested in a variety of ways. The fact that size discrimination of vertical bars is unimpaired when high spatial frequencies are filtered out of the image by blurring, and the fact that spatial-frequency adaptation alters perceived size, argue in favor of such hypothesis. However, the hypothesis is weakened by the observation that discrimination is also unimpaired by filtering low frequencies out of the image and by the observation that some manipulations which alter the Fourier transform produce no corresponding perceptual change. No current theory of size perception appears to fit all of these data.


Perception ◽  
1979 ◽  
Vol 8 (5) ◽  
pp. 529-539 ◽  
Author(s):  
Alison Bowling ◽  
William Lovegrove ◽  
Barry Mapperson

The visual persistence of sinusoidal gratings of varying spatial frequency and contrast was measured. It was found that the persistence of low-contrast gratings was longer than that of high-contrast stimuli for all spatial frequencies investigated. At higher contrast levels of 1 and 4 cycles deg−1 gratings, a tendency for persistence to be independent of contrast was observed. For 12 cycles deg−1 gratings, however, persistence continued to decrease with increasing contrast. These results are compared with recently published data on other temporal responses, and are discussed in terms of the different properties of sustained and transient channels.


Perception ◽  
1997 ◽  
Vol 26 (8) ◽  
pp. 1047-1058 ◽  
Author(s):  
Howard C Hughes ◽  
David M Aronchick ◽  
Michael D Nelson

It has previously been observed that low spatial frequencies (≤ 1.0 cycles deg−1) tend to dominate high spatial frequencies (≥ 5.0 cycles deg−1) in several types of visual-information-processing tasks. This earlier work employed reaction times as the primary performance measure and the present experiments address the possibility of low-frequency dominance by evaluating visually guided performance of a completely different response system: the control of slow-pursuit eye movements. Slow-pursuit gains (eye velocity/stimulus velocity) were obtained while observers attempted to track the motion of a sine-wave grating. The drifting gratings were presented on three types of background: a uniform background, a background consisting of a stationary grating, or a flickering background. Low-frequency dominance was evident over a wide range of velocities, in that a stationary high-frequency component produced little disruption in the pursuit of a drifting low spatial frequency, but a stationary low frequency interfered substantially with the tracking of a moving high spatial frequency. Pursuit was unaffected by temporal modulation of the background, suggesting that these effects are due to the spatial characteristics of the stationary grating. Similar asymmetries were observed with respect to the stability of fixation: active fixation was less stable in the presence of a drifting low frequency than in the presence of a drifting high frequency.


2002 ◽  
Vol 19 (5) ◽  
pp. 645-650 ◽  
Author(s):  
THOMAS STEPHAN HEINRICH ◽  
MICHAEL BACH

Contrast adaptation occurs in both the retina and the cortex. Defining its spatial dependence is crucial for understanding its potential roles. We thus asked to what degree contrast adaptation depends on spatial frequency, including cross-adaptation. Measuring the pattern electroretinogram (PERG) and the visual evoked potential (VEP) allowed separating retinal and cortical contributions. In ten subjects we recorded simultaneous PERGs and VEPs. Test stimuli were sinusoidal gratings of 98% contrast with spatial frequencies of 0.5 or 5.0 cpd, phase reversing at 17 reversals/s. Adaptation was controlled by prolonged presentation of these test stimuli or homogenous gray fields of the same luminance. When adaptation and test frequency were identical, we observed significant contrast adaptation only at 5 cpd: an amplitude reduction in the PERG (−22%) and VEP (−58%), and an effective reduction of latency in the PERG (−0.95 ms). When adapting at 5 cpd and testing at 0.5 cpd, the opposite effect was observed: enhancement of VEP amplitude by +26% and increase in effective PERG latency by +1.35 ms. When adapting at 0.5 cpd and testing at 5 cpd, there was no significant amplitude change in PERG and VEP, but a small effective PERG latency increase of +0.65 ms. The 0.5-cpd channel was not adapted by spatial frequencies of 0.5 cpd. The adaptability of the 5-cpd channel may mediate improved detail recognition after prolonged blur. The existence of both adaptable and nonadaptable mechanisms in the retina allows for the possibility that by comparing the adaptational state of spatial-frequency channels the retina can discern between overall low contrast and defocus in emmetropization control.


1979 ◽  
Vol 80 (1) ◽  
pp. 191-216
Author(s):  
ROBERT B. PINTER

1. The descending contralateral movement detector (DCMD) of the locust responds vigorously to small target (ca. 5°) stimuli; this response is inhibited by simultaneous or subsequent rotation of a radial grating (windmill) pattern (subtending 19-90° of visual angle) and suppressed by earlier rotation. 2. The excitation produced in the DCMD by rotation of a radial grating pattern depends only on the spatial frequency of the stripes of the pattern, and is independent of pattern size, and of temporal frequency over the range of low values used. 3. The inhibition produced by this same stimulus similarly depends only on the spatial frequency of the stripes of the pattern, independent of pattern size, and of temporal frequency over the range of low values used. 4. As the radial grating excitation decreases with increasing spatial frequency, the inhibition increases until limited by optical and neural resolution. 5. For spatial frequencies of the radial grating pattern below 0.05 cyc/deg the radial grating patterns become excitatory. Above 0.05 cyc/deg they are inhibitory. This is the point in spatial frequency below which inhibitory grating ‘backgrounds’ become excitatory targets. 6. Inhibition decreases as the size of the radial grating pattern is decreased below 190 visual angle; at 8° or less no inhibition can be found at any spatial frequency. 7. Inhibition is greater in the posterior than anterior regions of the receptive field, and greater in the ventral than the dorsal regions. 8. Inhibition decreases as the distance between small target and the radial grating is increased, but this is influenced by the local variations of excitation and inhibition. 9. Habituation is often greater for small target and low-frequency radial grating response than for inhibited small target and high frequency grating response. 10. These results substantiate previously proposed lateral inhibition models of the acridid movement detector system.


2005 ◽  
Vol 55 (3) ◽  
pp. 245-258 ◽  
Author(s):  
◽  
◽  
◽  

AbstractFlickering light can cause adverse effects in some humans, as can rhythmic spatial patterns of particular frequencies. We investigated whether birds react to the temporal frequency of standard 100 Hz fluorescent lamps and the spatial frequency of the visual surround in the manner predicted by the human literature, by examining their effects on the preferences, behaviour and plasma corticosterone of European starlings (Sturnus vulgaris). We predicted that high frequency lighting (> 30 kHz) and a relatively low spatial frequency on the walls of their cages (0.1 cycle cm−1) would be less aversive than low frequency lighting (100 Hz) and a relatively high spatial frequency (2.5 cycle cm−1). Birds had strong preferences for both temporal and spatial frequencies. These preferences did not always fit with predictions, although there was evidence that 100 Hz was more stressful than 30 kHz lighting, as birds were less active and basal corticosterone levels were higher under 100 Hz lighting. Our chosen spatial frequencies had no overall significant effect on corticosterone levels. Although there are clearly effects of, and interactions between, the frequency of the light and the visual surround on the behaviour and physiology of birds, the pattern of results is not straightforward.


1996 ◽  
Vol 8 (3) ◽  
pp. 197-230 ◽  
Author(s):  
Howard C. Hughes ◽  
George Nozawa ◽  
Frederick Kitterle

A great deal of evidence suggests that early in processing, retinal images are filtered by parallel, spatial frequency selective channels. We attempt to incorporate this view of early vision with the principle of global precedence, which holds that Gestalt-like processes sensitive to global image configurations tend to dominate local feature processing in human pattern perception. Global precedence is inferred from the pattern of reaction times observed when visual patterns contain multiple cues at different levels of spatial scale. Specifically, it is frequently observed that global processing times are largely unaffected by conflicting local cues, but local processing times are substantially lengthened by conflicting global cues. The asymmetry of these effects suggests the dominant role of global configurations. Since global spatial information is effectively represented by low spatial frequencies, global precedence potentially implies a low frequency dominance. The thesis is that low spatial frequencies tend to be available before information carried by higher frequency bands, producing a coarse-to-fine temporal order in visual spatial perception. It is suggested that a variety of factors contribute to the “prior entry” of low frequency information, including the high contrast gain of the magnocellular pathway, the amplitude spectra typical of natural images, and inhibitory interactions between the parallel frequency-tuned channels. Evidence suggesting a close relationship between global precedence and spatial frequency channels is provided by observations that the essential features of the global precedence effect are obtained using patterns consisting of low and high frequency sinusoids. The hypothesis that these asymmetric interference effects are due to interactions between parallel spatial channels is supported by an analysis of reaction times (RTs), which shows that RTs to redundant low and high frequency cues produce less facilitation than predictions that assume the channels are independent. In view of previous work showing that global precedence depends upon the low frequency content of the stimuli, we suggest that low spatial frequencies represent the sine qua non for the dominance of configurational cues in human pattern perception, and that this configurational dominance reflects the microgenesis of visual pattern perception. This general view of the temporal dynamics of visual pattern recognition is discussed, is considered from an evolutionary perspective, and is related to certain statistical regularities in natural scenes. Potential adaptive advantages of an interactive parallel architecture that confers an initial processing advantage to low resolution information are explored.


Perception ◽  
1986 ◽  
Vol 15 (3) ◽  
pp. 259-273 ◽  
Author(s):  
Gordon L Shulman ◽  
Marc A Sullivan ◽  
Ken Gish ◽  
William J Sakoda

Adaptation and reaction-time techniques were used to examine the role of different spatial-frequency channels in the perception of local and global structure. Subjects were shown figures consisting of a large C composed of smaller Cs and asked to identify the orientation of either the global C or its local elements. Prior to performing the task subjects were adapted to different spatial frequencies and the effect on subsequent performance was assessed. Two main results were found. First, the adapting frequency that most affected the global task was often lower than that most affecting the local task, suggesting that high and low frequencies independently code the structure of an image. Second, reaction time to global figures was often faster than to local figures at all levels of detectability, again suggesting a role of low-frequency channels in global processing.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 37-37 ◽  
Author(s):  
H Distler ◽  
H H Bülthoff

Velocity perception has been investigated in many experiments with stimuli moving in the picture plane (2-D). For example, experiments with sine-wave gratings have shown that high-frequency patterns are perceived as moving faster than low-frequency patterns, and that high-contrast patterns are perceived as moving faster than low-contrast patterns. We investigated the influence of contrast and spatial frequency on perceived velocity in an open-loop driving simulation to determine whether contrast and spatial frequency account for differences in perceived velocity in complex 3-D environments. The simulated scene consisted of a textured road flanked by two meadows. We used road surface textures with different contrast and spatial frequency contents. In a 2AFC paradigm participants were simultaneously presented two driving simulation sequences depicting vehicles moving at different velocities on roads with different surface textures. Participants judged which vehicle was moving faster. Using an adaptive staircase procedure we determined the point of subjective equality for roads with different surface textures. The results show that perceived velocity in a driving simulation does depend on contrast and spatial frequency of the surface texture. Perceived velocity can be increased by increasing the contrast or the relative amount of high spatial frequencies in the surface texture. The relevance of these results for the design of driving simulators is discussed.


Sign in / Sign up

Export Citation Format

Share Document