A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing

Author(s):  
Robert Mahen
Author(s):  
David E. Gordon ◽  
Gwendolyn M. Jang ◽  
Mehdi Bouhaddou ◽  
Jiewei Xu ◽  
Kirsten Obernier ◽  
...  

ABSTRACTAn outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lotta Happonen ◽  
Simon Hauri ◽  
Gabriel Svensson Birkedal ◽  
Christofer Karlsson ◽  
Therese de Neergaard ◽  
...  

Author(s):  
Yadi Zhou ◽  
Yuan Hou ◽  
Jiayu Shen ◽  
Yin Huang ◽  
William Martin ◽  
...  

AbstractHuman Coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle east respiratory syndrome coronavirus (MERS-CoV), and 2019 novel coronavirus (2019-nCoV), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV. Drug repurposing, represented as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV-host interactome and drug targets in the human protein-protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV has the highest nucleotide sequence identity with SARS-CoV (79.7%) among the six other known pathogenic HCoVs. Specifically, the envelope and nucleocapsid proteins of 2019-nCoV are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and known HCoV-host interactions in the human protein-protein interactome, we computationally identified 135 putative repurposable drugs for the potential prevention and treatment of HCoVs. In addition, we prioritized 16 potential anti-HCoV repurposable drugs (including melatonin, mercaptopurine, and sirolimus) that were further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. Finally, we showcased three potential drug combinations (including sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the ‘Complementary Exposure’ pattern: the targets of the drugs both hit the HCoV-host subnetwork, but target separate neighborhoods in the human protein-protein interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations toward future clinical trials for HCoVs.


Sign in / Sign up

Export Citation Format

Share Document