interaction map
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 61)

H-INDEX

48
(FIVE YEARS 7)

2022 ◽  
Vol 1 ◽  
Author(s):  
Wenhui Yu ◽  
Yuxin Bai ◽  
Arjun Raha ◽  
Zhi Su ◽  
Fei Geng

The ongoing COVID-19 outbreak have posed a significant threat to public health worldwide. Recently Toll-like receptor (TLR) has been proposed to be the drug target of SARS-CoV-2 treatment, the specificity and efficacy of such treatments remain unknown. In the present study we performed the investigation of repurposed drugs via a framework comprising of Search Tool for Interacting Chemicals (STITCH), Kyoto Encyclopedia of Genes and Genomes (KEGG), molecular docking, and virus-host-drug interactome mapping. Chloroquine (CQ) and hydroxychloroquine (HCQ) were utilized as probes to explore the interaction network that is linked to SARS-CoV-2. 47 drug targets were shown to be overlapped with SARS-CoV-2 network and were enriched in TLR signaling pathway. Molecular docking analysis and molecular dynamics simulation determined the direct binding affinity of TLR9 to CQ and HCQ. Furthermore, we established SARS-CoV-2-human-drug protein interaction map and identified the axis of TLR9-ERC1-Nsp13 and TLR9-RIPK1-Nsp12. Therefore, the elucidation of the interactions of SARS-CoV-2 with TLR9 axis will not only provide pivotal insights into SARS-CoV-2 infection and pathogenesis but also improve the treatment against COVID-19.


2021 ◽  
Author(s):  
Marilyn Goudreault ◽  
Valérie Gagné ◽  
Chang Hwa Jo ◽  
Swati Singh ◽  
Ryan Killoran ◽  
...  

Abstract AFDN/Afadin is required for establishment and maintenance of cell-cell contacts and is a unique effector of RAS GTPases. The biological consequences of RAS signalling to AFDN are unknown. Here, we use proximity-based proteomics to generate an interaction map for the long and short isoforms of AFDN, identifying the polarity protein SCRIB/Scribble as the top hit. We reveal that the first PDZ domain of SCRIB and the AFDN FHA domain mediate a direct but non-canonical interaction between these important adhesion and polarity proteins. Further, the dual RA domains of AFDN have broad specificity for RAS and RAP GTPases, and KRAS co-localizes with and promotes AFDN-SCRIB complex formation. Knockout of AFDN or SCRIB in MCF7 epithelial cells disrupts MAPK and PI3K activation and inhibits cell motility in a growth factor-dependent manner. These data have important implications for understanding why cells with activated RAS have reduced cell contacts and polarity defects, and finally begin to characterize AFDN as a RAS effector.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Josephine T. Daub ◽  
Saman Amini ◽  
Denise J. E. Kersjes ◽  
Xiaotu Ma ◽  
Natalie Jäger ◽  
...  

AbstractChildhood cancer is a major cause of child death in developed countries. Genetic interactions between mutated genes play an important role in cancer development. They can be detected by searching for pairs of mutated genes that co-occur more (or less) often than expected. Co-occurrence suggests a cooperative role in cancer development, while mutual exclusivity points to synthetic lethality, a phenomenon of interest in cancer treatment research. Little is known about genetic interactions in childhood cancer. We apply a statistical pipeline to detect genetic interactions in a combined dataset comprising over 2,500 tumors from 23 cancer types. The resulting genetic interaction map of childhood cancers comprises 15 co-occurring and 27 mutually exclusive candidates. The biological explanation of most candidates points to either tumor subtype, pathway epistasis or cooperation while synthetic lethality plays a much smaller role. Thus, other explanations beyond synthetic lethality should be considered when interpreting genetic interaction test results.


2021 ◽  
Author(s):  
Yasmin Ghochani ◽  
Alireza Sohrabi ◽  
Sree Deepthi Deepthi Muthukrishnan ◽  
Riki Kawaguchi ◽  
Michael Condro ◽  
...  

Glioblastoma (GBM) is characterized by extensive microvascular hyperproliferation. In addition to supplying blood to the tumor, GBM vessels also provide trophic support to glioma cells and serve as conduits for migration into the surrounding brain promoting recurrence. Here, we enriched CD31-expressing glioma vascular cells (GVC) and A2B5-expressing glioma tumor cells (GTC) from primary GBM and utilized RNA sequencing to create a comprehensive interaction map of the secreted and extracellular factors elaborated by GVC that can interact with receptors and membrane molecules on GTC. To validate our findings, we utilized functional assays, including a novel hydrogel-based migration assay and in vivo mouse models to demonstrate that one identified factor, the little-studied integrin binding sialoprotein (IBSP) enhances tumor growth and promotes the migration of GTC along the vasculature. This perivascular niche interactome will serve a resource to the research community in defining the potential functions of the GBM vasculature.


Author(s):  
A. S. Alekseeva ◽  
P. E. Volynsky ◽  
I. A. Boldyrev

Abstract The regulation of the activity and selectivity of phospholipase A2 (PLA2), which is capable of cleaving fatty acid in the second position (sn-2) of the phospholipid, is carried out through the membrane-binding and catalytic sites of the enzyme. For hydrolytic activity, PLA2 must first bind to the phospholipid membrane, and the binding efficiency depends on the composition of the membrane. The membrane-binding site of PLA2 is formed by several tens of amino acids and its composition differs from enzyme to enzyme; hydrophobic and positively charged amino acids play a key role in the interaction. In this work, we investigated the interaction of PLA2 from bee venom with phospholipid bilayers of palmitoyl oleoylphosphatidylcholine (POPC) containing different amounts of palmitoyloleoylphosphatidylglycerol (POPG). On the basis of the measurements of the protein intrinsic fluorescence and the anisotropy of the fluorescence of the lipid probe we propose the construction of lipid–protein interaction maps, which reflect both the efficiency of protein binding and changes in the structure of the membrane. These changes cause alterations in the fluorescence anisotropy of the label, which in turn is a measure of the mobility of the lipid environment of the fluorescent probe. Analysis of interaction maps showed that there is a relationship between lipid mobility and enzyme binding efficiency: the optimum interaction of PLA2 with membranes from a POPC/POPG mixture lies in the region of the highest lipid mobility, and not in the region of the highest negative charge. This dependence complements the existing understanding of the process of recognition of the membrane surface by the enzyme and the selection of lipids by the enzyme already bound to the membrane. The proposed mapping method can be extended to other membrane-active proteins.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256640
Author(s):  
Nisan Denizce Can ◽  
Ezgi Basturk ◽  
Tugba Kizilboga ◽  
Izzet Mehmet Akcay ◽  
Baran Dingiloglu ◽  
...  

Bag-1 is a multifunctional protein that regulates Hsp70 chaperone activity, apoptosis, and proliferation. The three major Bag-1 isoforms have different subcellular localizations and partly non-overlapping functions. To identify the detailed interaction network of each isoform, we utilized mass spectrometry-based proteomics and found that interactomes of Bag-1 isoforms contained many common proteins, with variations in their abundances. Bag-1 interactomes were enriched with proteins involved in protein processing and degradation pathways. Novel interaction partners included VCP/p97; a transitional ER ATPase, Rad23B; a shuttling factor for ubiquitinated proteins, proteasome components, and ER-resident proteins, suggesting a role for Bag-1 also in ER-associated protein degradation (ERAD). Bag-1 pull-down from cells and tissues from breast cancer patients validated these interactions and showed cancer-related prominence. Using in silico predictions we detected hotspot residues of Bag-1. Mutations of these residues caused loss of binding to protein quality control elements and impaired proteasomal activity in MCF-7 cells. Following CD147 glycosylation pattern, we showed that Bag-1 downregulated VCP/p97-dependent ERAD. Overall, our data extends the interaction map of Bag-1, and broadens its role in protein homeostasis. Targeting the interaction surfaces revealed in this study might be an effective strategy in the treatment of cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikolay Dobrev ◽  
Yasar Luqman Ahmed ◽  
Anusree Sivadas ◽  
Komal Soni ◽  
Tamás Fischer ◽  
...  

AbstractCryptic unstable transcripts (CUTs) are rapidly degraded by the nuclear exosome in a process requiring the RNA helicase Mtr4 and specific adaptor complexes for RNA substrate recognition. The PAXT and MTREC complexes have recently been identified as homologous exosome adaptors in human and fission yeast, respectively. The eleven-subunit MTREC comprises the zinc-finger protein Red1 and the Mtr4 homologue Mtl1. Here, we use yeast two-hybrid and pull-down assays to derive a detailed interaction map. We show that Red1 bridges MTREC submodules and serves as the central scaffold. In the crystal structure of a minimal Mtl1/Red1 complex an unstructured region adjacent to the Red1 zinc-finger domain binds to both the Mtl1 KOW domain and stalk helices. This interaction extends the canonical interface seen in Mtr4-adaptor complexes. In vivo mutational analysis shows that this interface is essential for cell survival. Our results add to Mtr4 versatility and provide mechanistic insights into the MTREC complex.


2021 ◽  
Vol 219 ◽  
pp. 111423 ◽  
Author(s):  
Christos T. Chasapis ◽  
Athanasia K. Georgiopoulou ◽  
Spyros P. Perlepes ◽  
Geir Bjørklund ◽  
Massimiliano Peana
Keyword(s):  

2021 ◽  
Vol 17 (5) ◽  
pp. e1009603
Author(s):  
Lara Contu ◽  
Giuseppe Balistreri ◽  
Michal Domanski ◽  
Anne-Christine Uldry ◽  
Oliver Mühlemann

The positive-sense, single-stranded RNA alphaviruses pose a potential epidemic threat. Understanding the complex interactions between the viral and the host cell proteins is crucial for elucidating the mechanisms underlying successful virus replication strategies and for developing specific antiviral interventions. Here we present the first comprehensive protein-protein interaction map between the proteins of Semliki Forest Virus (SFV), a mosquito-borne member of the alphaviruses, and host cell proteins. Among the many identified cellular interactors of SFV proteins, the enrichment of factors involved in translation and nonsense-mediated mRNA decay (NMD) was striking, reflecting the virus’ hijacking of the translation machinery and indicating viral countermeasures for escaping NMD by inhibiting NMD at later time points during the infectious cycle. In addition to observing a general inhibition of NMD about 4 hours post infection, we also demonstrate that transient expression of the SFV capsid protein is sufficient to inhibit NMD in cells, suggesting that the massive production of capsid protein during the SFV reproduction cycle is responsible for NMD inhibition.


Sign in / Sign up

Export Citation Format

Share Document