Mechanical heterogeneity along single cell-cell junctions is driven by lateral clustering of cadherins during vertebrate axis elongation

2020 ◽  
Author(s):  
Sundar Naganathan
2019 ◽  
Author(s):  
Yuqi Zhang ◽  
Krista M. Pettee ◽  
Kathryn N. Becker ◽  
Kathryn M. Eisenmann

AbstractBackgroundEpithelial ovarian cancer (EOC) cells disseminate within the peritoneal cavity, in part, via the peritoneal fluid as single cells, clusters, or spheroids. Initial single cell egress from a tumor can involve disruption of cell-cell adhesions as cells are shed from the primary tumor into the peritoneum. In epithelial cells, Adherens Junctions (AJs) are characterized by homotypic linkage of E-cadherins on the plasma membranes of adjacent cells. AJs are anchored to the intracellular actin cytoskeletal network through a complex involving E-cadherin, p120 catenin, β-catenin, and αE-catenin. However, the specific players involved in the interaction between the junctional E-cadherin complex and the underlying F-actin network remains unclear. Recent evidence indicates that mammalian Diaphanous-related (mDia) formins plays a key role in epithelial cell AJ formation and maintenance through generation of linear actin filaments. Binding of αE-catenin to linear F-actin inhibits association of the branched-actin nucleator Arp2/3, while favoring linear F-actin bundling. We previously demonstrated that loss of mDia2 was associated with invasive single cell egress from EOC spheroids through disruption of junctional F-actin.ResultsIn the current study, we now show that mDia2 has a role at adherens junctions (AJs) in EOC OVCA429 cells and human embryonic kidney (HEK) 293 cells through its association with αE-catenin and β-catenin. mDia2 depletion in EOC cells leads to reduction in actin polymerization and disruption of cell-cell junctions with decreased interaction between β-catenin and E-cadherin.ConclusionsOur results support a necessary role for mDia2 in AJ stability in EOC cell monolayers and indicate a critical role for mDia formins in regulating EOC AJs during invasive transitions.


2019 ◽  
Vol 30 (25) ◽  
pp. 3024-3036 ◽  
Author(s):  
Anna Balcerak ◽  
Alicja Trebinska-Stryjewska ◽  
Maciej Wakula ◽  
Mateusz Chmielarczyk ◽  
Urszula Smietanka ◽  
...  

HAX1 protein is involved in the regulation of apoptosis, cell motility and calcium homeostasis. Its overexpression was reported in several tumors, including breast cancer. This study demonstrates that HAX1 has an impact on collective, but not single-cell migration, thus indicating the importance of cell–cell contacts for the HAX1-mediated effect. Accordingly, it was shown that HAX1 knockdown affects cell–cell junctions, substrate adhesion, and epithelial cell layer integrity. As demonstrated here, these effects can be attributed to the modulation of actomyosin contractility through changes in RhoA and septin signaling. Additionally, it was shown that HAX1 does not influence invasive potential in the breast cancer cell line, suggesting that its role in breast cancer progression may be linked instead to collective invasion of the epithelial cells but not single-cell dissemination.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S138-S139
Author(s):  
L Potari-gul ◽  
D Modos ◽  
D Turei ◽  
A Valdeolivas ◽  
M Madgwick ◽  
...  

Abstract Background Intercellular communication is essential for growing and differentiating in multicellular organisms by transducing the signal from cell to cell. Despite its importance, the molecular background is less discovered due to the lack of data. This gap has started to be addressed with the appearance of single-cell omics approaches providing an insight among others into the gene expression of individual cells. Methods We have developed a method to predict and compare cell-cell signalling interactions using single-cell RNAseq data from colon biopsies. Transcriptomic data alone is not capable of connecting the cells, a reliable network resource is needed to mediate the signal via protein-protein interactions between the source and target cells. Here we used OmniPath - a resource providing not only intra- and intercellular interactions but also annotations of proteins involved in the interplay of cells - to reconstruct signalling networks. We examined intercellular communication among five cell-types (regulatory T cell, macrophage, dendritic cell, goblet cell and myofibroblast) in healthy colon and during Ulcerative Colitis. Results Our analysis shows that there are significant differences in the type of cell-cell communication (ligand-receptor connections, adherens junctions, etc.) between the healthy and Ulcerative Colitis (UC) conditions, and these differences lead to altered downstream effects in the signal receiving cell. In both conditions, the ligand-receptor and adhesion connections were overrepresented, however cell junctions were less abundant in UC. Regarding the communication among the five cell-types, in healthy condition, cells are tightly connected to dendritic cells while in diseased condition to regulatory T cells. Focusing on ligand-receptor interactions between myofibroblasts and regulatory T cells, our pipeline identified the MAPK, Toll-like receptor (TLR) 2/6 and TLR 7/8 pathways enriched downstream in healthy conditions. In contrast, TLR3 and TLR4 pathways were affected by the myofibroblast in Ulcerative Colitis. Conclusion We found key intercellular mechanisms leading to well-defined differential pathway activation profiles. We showed that in uninflamed UC condition myofibroblasts disrupt the anti-inflammatory effect of regulatory T cells. Our pipeline is able to predict and analyse cell-cell interactions and their downstream effects and to highlight the differences in healthy and diseased states.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Robert J Huebner ◽  
Abdul Naseer Malmi-Kakkada ◽  
Sena Sarikaya ◽  
Shinuo Weng ◽  
D Thirumalai ◽  
...  

Morphogenesis is governed by the interplay of molecular signals and mechanical forces across multiple length scales. The last decade has seen tremendous advances in our understanding of the dynamics of protein localization and turnover at sub-cellular length scales, and at the other end of the spectrum, of mechanics at tissue-level length scales. Integrating the two remains a challenge, however, because we lack a detailed understanding of the subcellular patterns of mechanical properties of cells within tissues. Here, in the context of the elongating body axis of Xenopus embryos, we combine tools from cell biology and physics to demonstrate that individual cell-cell junctions display finely-patterned local mechanical heterogeneity along their length. We show that such local mechanical patterning is essential for the cell movements of convergent extension and is imparted by locally patterned clustering of a classical cadherin. Finally, the patterning of cadherins and thus local mechanics along cell-cell junctions are controlled by Planar Cell Polarity signaling, a key genetic module for CE that is mutated in diverse human birth defects.


2019 ◽  
Author(s):  
Yujun Chen ◽  
Nirupama Kotian ◽  
George Aranjuez ◽  
Lin Chen ◽  
C. Luke Messer ◽  
...  

AbstractCollective cell migration is central to many developmental and pathological processes. However, the mechanisms that keep cell collectives together and coordinate movement of multiple cells are poorly understood. Using the Drosophila border cell migration model, we find that Protein phosphatase 1 (Pp1) activity controls collective cell cohesion and migration. Inhibition of Pp1 causes border cells to round up, dissociate, and move as single cells with altered motility. We present evidence that Pp1 promotes proper levels of cadherin-catenin complex proteins at cell-cell junctions within the cluster to keep border cells together. Pp1 further restricts actomyosin contractility to the cluster periphery rather than at internal cell-cell contacts. We show that the myosin phosphatase Pp1 complex, which inhibits non-muscle myosin-II (Myo-II) activity, coordinates border cell shape and cluster cohesion. Given the high conservation of Pp1 complexes, this study identifies Pp1 as a major regulator of collective versus single cell migration.


Author(s):  
Robert J. Huebner ◽  
Abdul Naseer Malmi-Kakkada ◽  
Sena Sarikaya ◽  
Shinuo Weng ◽  
D. Thirumalai ◽  
...  

AbstractMorphogenesis is governed by the interplay of molecular signals and mechanical forces across multiple length scales. The last decade has seen tremendous advances in our understanding of the dynamics of protein localization and turnover at sub-cellular length scales, and at the other end of the spectrum, of mechanics at tissue-level length scales. Integrating the two remains a challenge, however, because we lack a detailed understanding of the subcellular patterns of mechanical properties of cells within tissues. Here, in the context of the elongating body axis of a vertebrate embryo, we combine tools from cell biology and physics to demonstrate that individual cell-cell junctions display finely-patterned local mechanical heterogeneity along their length. We show that such local mechanical patterning is essential for the cell movements of convergent extension and is imparted by locally patterned clustering of a classical cadherin. Finally, the patterning of cadherins and thus local mechanics along cell-cell junctions are controlled by Planar Cell Polarity signaling, a key genetic module for CE that is mutated in diverse human birth defects.


Development ◽  
2021 ◽  
Author(s):  
Eunice H. Y. Chan ◽  
Yanxiang Zhou ◽  
Birgit L. Aerne ◽  
Maxine V. Holder ◽  
Anne Weston ◽  
...  

Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. RASSF8 loss elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, whose depletion phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document