A Design Equation for the Stress Concentration Factor of an Oblate Ellipsoidal Cavity

2011 ◽  
Vol 46 (2) ◽  
pp. 87-94 ◽  
Author(s):  
C-R Chiang

The stress concentration factor (SCF) of an oblate ellipsoidal cavity in an isotropic material subjected to a uniform normal stress at infinity perpendicular to the equator of the cavity is determined by the equivalent inclusion method. Numerical results are obtained for general cases; particularly, explicit and exact results are obtained for cases of strongly oblate cavities. To extend the range of validity for these cases, a two-dimensional model is developed for finding the correction terms and a simple equation for the SCF of an oblate ellipsoidal cavity is thus obtained. The accuracy of the equation is probed and it is shown that the proposed formula is sufficiently accurate for design purposes.

1950 ◽  
Vol 17 (3) ◽  
pp. 233-248
Author(s):  
L. F. Coffin

Abstract The mechanism of flow and fracture of a gray cast iron can be understood if one considers the microstructure to consist of a ductile structure with a random dispersion of cracks due to the graphite flakes following the concept of Fisher. A notch effective stress can be calculated for a critically situated crack by a knowledge of the external stresses, a plastic stress-concentration factor of 3, and a residual tensile stress at the sharp edge of the crack, based upon either the “maximum-shear” theory or the “distortion-energy” theory. This allows the formulation of generalized plastic stress-strain relationships and renders gray cast iron applicable to the many known solutions for plastic flow of ductile metals. Fracture in the region of tension-tension and tension-compression can be evaluated by a similar analysis, using the same stress-concentration factor and the same residual stress. A combined stress-testing program is described wherein thin-walled cast-iron tubes are subjected to two-dimensional states of combined stress covering the complete two-dimensional field.


1962 ◽  
Vol 29 (3) ◽  
pp. 575-577 ◽  
Author(s):  
Kunio Nishioka ◽  
Nobuyoshi Hisamitsu

The two-dimensional photoelastic investigation has been made on the effect of plate width, pitch, and depth of notch on the stress-concentration factor in a finite plate, which is for the single and multiple notches of any depth, under pure bending. Thus the stress-concentration factor, the effective notch depth, and the reduction of stress concentration caused by multiple notches were clarified.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110264
Author(s):  
Zhang Ying ◽  
Lian Zhanghua ◽  
Gao Anqi ◽  
Yang Kun

The thread connection’s root fillet radius of 0.038″ size is the greatest weakness of the API NC type joints and thread. During the slimehole drilling, especially in the deep and ultra-deep gas well, its stress concentration factor and notch sensitivity factor are very high A novel thread connection design (TM) of a drilling tool is proposed to decrease the fatigue failure of the slimehole drilling tool in the deep and the ultra-deep gas well in the Tarim oilfield China. The novelty in the TM thread structure is, reducing the threads per inch, extending the distance from the last engaged thread to the external shoulder of the pin and adding three threads to the conventional connection. The novel thread connection will improve the slimehole drilling tool’s anti-fatigue life due to its improved elasticity and rigidity. Furthermore, the TM can transfer the maximum stress at the connection root to the loaded surface, which can effectively lower the fatigue notch’s sensitivity coefficient. In this paper, the finite element method (FEM) is applied to carry out the detailed comparative analysis of the TM with existing thread connection NC38, TX60 and TH90. The TM has the lowest stress concentration factor and fatigue notch sensitivity coefficient, so its anti-fatigue life is the highest. In addition, TM is manufactured and is tested at Tarim oilfield in China.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Changqing Miao ◽  
Yintao Wei ◽  
Xiangqiao Yan

A numerical approach for the stress concentration of periodic collinear holes in an infinite plate in tension is presented. It involves the fictitious stress method and a generalization of Bueckner's principle. Numerical examples are concluded to show that the numerical approach is very efficient and accurate for analyzing the stress concentration of periodic collinear holes in an infinite plate in tension. The stress concentration of periodic collinear square holes in an infinite plate in tension is studied in detail by using the numerical approach. The calculated stress concentration factor is proven to be accurate.


1955 ◽  
Vol 22 (2) ◽  
pp. 172-174
Author(s):  
I. Cornet ◽  
R. C. Grassi

Abstract Data are presented on the fracture of inoculated-iron thin-wall tubes, investigated under various ratios of axial to tangential stress, ranging from pure tension to pure compression. These data are consistent with published data on gray cast iron. It may be assumed that in cast-iron, plates of friable graphite in an iron matrix, act like solid iron with respect to compressive stresses, but they act as stress-concentrating cavities with respect to tensile stresses. This gives a stress-concentration factor, which is easily determined experimentally. Stress-concentration factors obtained were 3.2–3.3 for gray cast iron, and 2.4–2.5 for inoculated cast iron. A distortion-energy criterion for fracture, modified by this stress-concentration factor, is consistent with the experimental data. It appears that the concentration of the dispersed graphite, and the shape and size of this brittle phase, affect the fracture strength under combined stresses.


Sign in / Sign up

Export Citation Format

Share Document