Laser Doppler velocimetry measurements of flow within the cylinder of a motored tow-stroke cycle engine-comparison with some computational fluid dynamics predictions

2003 ◽  
Vol 4 (2) ◽  
pp. 103-128 ◽  
Author(s):  
J. P. Creaven ◽  
R Fleck ◽  
R. G. Kenny ◽  
G Cunningham

This study was carried out to assess the ability of a computational fluid dynamics (CFD) code to predict the scavenging flow in the cylinder of a two-stroke cycle engine. Predictions were obtained from a CFD simulation of the flow within the cylinder. Due to the apparent sym-metry of the engine port layout, only half of the cylinder volume was modelled. Boundary conditions for the CFD model were obtained from experimentally measured pressure-time histories in the crankcase and exhaust. The two-stroke cycle engine was modified to allow laser Doppler velocimetry (LDV) measurements to be made of the in-cylinder flow. The engine was operated under motoring conditions at 500 r/min with a delivery ratio of 0.7. Although the engine scavenge port layout was geometrically symmetrical, an asymmetrical flow field was identified in the cylinder. As a result of this, a direct comparison of the in-cylinder LDV measured and CFD computed results was not possible. However, LDV and CFD results for the in-cylinder flow are presented to help highlight the dissimilarity between the measured and predicted flow fields. Two-dimensional LDV measurements were made in the cylinder at the transfer ports for a portion of the cycle. A comparison of these LDV measurements with CFD predictions of the in-cylinder velocities at the same locations showed that the CFD model could replicate reasonably well the general trend of the flow. The measured cylinder averaged turbulent kinetic energy was compared with that of the CFD model. The qualitative trend of the overall turbulence generating capacity of the engine was well replicated by the CFD model.

2021 ◽  
Vol 1909 (1) ◽  
pp. 012075
Author(s):  
Daisuke Sugiyama ◽  
Asuma Ichinose ◽  
Tomoki Takeda ◽  
Kazuyoshi Miyagawa ◽  
Hideyo Negishi ◽  
...  

2016 ◽  
Vol 366 ◽  
pp. 40-46
Author(s):  
Rui Li Wang ◽  
Xiao Liang ◽  
Wen Zhou Lin ◽  
Xue Zhe Liu ◽  
Yun Long Yu

Verification and validation (V&V) are the primary means to assess the accuracy and reliability in computational fluid dynamics (CFD) simulation. V&V of the multi-medium detonation CFD model is conducted by using our independently-developed software --- Lagrangian adaptive hydrodynamics code in the 2D space (LAD2D) as well as a large number of benchmark testing models. Specifically, the verification of computational model is based on the basic theory of the computational scheme and mathematical physics equations, and validation of the physical model is accomplished by comparing the numerical solution with the experimental data. Finally, some suggestions are given about V&V of the detonation CFD model.


2012 ◽  
Vol 57 (1) ◽  
pp. 173-178 ◽  
Author(s):  
M. Shabani ◽  
A. Mazahery

Computational Fluid Dynamics (CFD) Simulation of Liquid-Liquid Mixing in Mixer Settler Mixer-settlers are widely used inmetallurgical, mineral and chemical process. One of the greatest challenges in the area of hydrometallurgy process simulation is agitation made by impeller inside mixer-settler which yet presents one of the most common operations. Computational fluid dynamics (CFD) model has been developed to predict the effect of different physical parameters including temperature and density on the mixing characteristics of the system. It is noted that non-isotropic nature of flow in a mixer-settler, the complex geometry of rotating impellers and the large disparity in geometric scales present are some of the factors which contribute to the simulation difficulty. The experimental data for different velocity outlet was also used in order to validate the model.


2016 ◽  
Vol 835 ◽  
pp. 386-393 ◽  
Author(s):  
Yi Wen Phuan ◽  
Eileen Ai Lyn Lau ◽  
Harun Mohamed Ismail ◽  
Byeong Kyu Lee ◽  
Meng Nan Chong

In this study, computational fluid dynamics (CFD) simulation was used to predict the performance of photoelectrocatalytic (PEC) reactors with surface reactions. PEC process is a promising and sustainable method that is capable for simultaneous organic degradation and hydrogen production. However, the overall PEC process efficiency is still unsatisfactory and not ready for scale-up application. Preliminary study using CFD model can help to reduce development time, money and effort in experimental work while providing comprehensive analysis and optimum PEC reactor design prior to its real physical fabrication. CFD model integrates irradiance distribution, hydrodynamics, species mass transport and chemical reaction kinetics within the reactor. The performance of PEC reactor for organic degradation depends on reactor configurations and hydrodynamic conditions. Thus, the main aim of this study was to optimize different PEC reactor designs using CFD modelling by varying the reactor configurations and hydrodynamic flow conditions for improved efficiency in degrading the sample organic pollutant of formic acid. The CFD modelling showed higher formic acid degradation efficiency for the simulated convex surface photoreactor than the flat surface photoreactor due to the former possess the ability to concentrate the absorbed light onto the photoanode surface. Besides, the CFD modelling showed that the formic acid degradation rate increased with decreasing inlet fluid flow velocity. This was due to the uniform flow distribution that enables evenly coverage of photoanode surface for subsequent degradation of formic acid in the PEC reactors. Further experimental work is required to validate the CFD simulation to allow better understanding and improvement of the overall efficiency of PEC reactors.


2015 ◽  
Vol 798 ◽  
pp. 170-174
Author(s):  
Paulo Henrique Terenzi Seixas ◽  
Paul Campos Santana Silva ◽  
Rudolf Huebner

In this article, the pilling process of hot steel bars is analyzed. During the loading three bars are placed over a wood surface, after those other three are placed over the previous for two times with 5 minutes intervals between them.They are all subject to a slow cooling by thermal radiation and free convection.A Computational Fluid Dynamics (CFD) model to predict the temperature profile of them is developed. Comparison between the CFD simulation results and experimental data yielded an average difference in the bars temperature between -0.3oC and 3.5oC.


2012 ◽  
Vol 557-559 ◽  
pp. 2249-2252 ◽  
Author(s):  
Song Lin Xu ◽  
Wen Qiang Mi

A computational fluid dynamics (CFD) model was used to simulate unsteady fluid flow in a two-dimensional channel. The flow was computed for several different geometries and velocity. Calculations show different flow patterns of the cavity spacer, the submerged spacer and the zigzag spacer. Applications of two-dimensional CFD simulation give a visual method to determine the advantages of each spacer type.


Sign in / Sign up

Export Citation Format

Share Document