Traction, Load and Film Thickness in Lightly-Loaded Lubricated Point Contacts

1973 ◽  
Vol 15 (6) ◽  
pp. 400-409 ◽  
Author(s):  
G. Dalmaz ◽  
M. Godet

Theoretical results, i.e. pressure distribution, load and traction for given film thicknesses, were obtained for rigid point contacts under equiviscous and piezoviscous conditions. Reynolds' boundary conditions are used and integration domain is shown to sizeably influence traction and load. Tests were conducted for a contact formed by a sphere and a transparent fixed plane for light and medium loads and for four oils of identical viscosity, but of different nature. The results obtained cover the equiviscous and piezoviscous hydrodynamic and elastohydrodynamic ranges. Good correlation between theoretical and experimental results is obtained in the first two regimes. Traction measurements did not allow us to differentiate between the rheological behaviour of straight mineral oils and oils highly loaded with polymers. Starvation observed in this study leads to a flattening of the contact zone and to an increase of the traction force.

1990 ◽  
Vol 216 ◽  
Author(s):  
Kamakhya P. Ghatak ◽  
S. N. Biswas

ABSTRACTIn this paper we studied the thermoelectric power under classically large magnetic field (TPM) in quantum wells (QWs), quantum well wires (QWWS) and quantum dots (QDs) of Bi by formulating the respective electron dispersion laws. The TPM increases with increasing film thickness in an oscillatory manner in all the cases. The TPM in QD is greatest and the least for quantum wells respectively. The theoretical results are in agreement with the experimental observations as reported elsewhere.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


Author(s):  
Fadi Ali ◽  
Ivan Křupka ◽  
Martin Hartl

This study presents experimental results on the effect of out-of-contact lubricant channeling on the tribological performance of nonconformal contacts under starved lubrication. Channeling of lubricant was carried out by adding a slider with a limited slot for scraping the displaced lubricant on one of mating surfaces (ball). Thus, the scraped lubricant is forced to flow back into the depleted track through the limited slot resulting in robust replenishment. The measurements have been conducted using optical tribometer (ball-on-disc) equipped with a digital camera and torque sensor. The effect of lubricant channeling was compared to the original contact condition by means of measuring friction and film thickness. The results show that the out-of-contact lubricant channeling leads to a significant enhancement of film thickness and friction reduction under starved conditions. Indeed, the starved elastohydrodynamic lubrication contacts transformed to the fully flooded regime after introducing the flow reconditioning. Moreover, the film thickness decay over time, which is common with starved elastohydrodynamic lubrication contacts, has not been observed in the case of lubricant channeling. However, the beneficial effect of lubricant channeling diminishes as the original contact condition tends to the fully flooded regime. The results of this study can be easily implemented in practical applications such as radial and thrust rolling-element bearings.


1982 ◽  
Vol 104 (3) ◽  
pp. 365-375 ◽  
Author(s):  
C. Cusano ◽  
L. D. Wedeven

The effects of artificially-produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact are investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, are held stationary at various locations within and in the vicinity of the contact region while the disk is rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.


2018 ◽  
Vol 117 ◽  
pp. 236-249 ◽  
Author(s):  
Josef Fryza ◽  
Petr Sperka ◽  
Ivan Krupka ◽  
Martin Hartl

A technique using Newton’s rings for mapping the oil film of lubricated point contacts is described. A theoretical value for the film thickness of such contacts in elastohydrodynamic lubrication is derived. The experimental results give the exit constriction predicted by previous theory but never shown in detail. The comparison of theoretical and experimental oil film thicknesses, which is satisfactorily accurate, gives strong evidence for a viscous surface layer some 1000Å thick. This film agrees with the known ‘lubricating power’ of the various oils tested.


1990 ◽  
Vol 198 ◽  
Author(s):  
Ktamkahya P. Ghatak ◽  
B. De ◽  
M. Mondal ◽  
S.N. Biswas

ABSTRACTWe have studied the thermoelectric power in quantum dots (QDs) of non-parabolic semiconductors in the presence of a classically large magnetic field and we have taken A3N B2V, ternary chalcopyrite, II-VI and III-V semiconductors. It is found that the thermopower increases with increasing film thickness and decreasing electron concentration respectively in all the cases. The numerical values are greatest for Cd3As2 and least for InAs and the theoretical results are in ageement with the experimental observation as reported elsewhere.


Sign in / Sign up

Export Citation Format

Share Document