The Minimum Film Thickness in Lubricated Line Contacts during a Reversal of Entrainment—Isoviscous Behaviour

Author(s):  
C J Hooke

In most line contacts, the film thickness can be adequately determined using a quasi-static analysis. The one exception appears to occur when the direction of entrainment changes. Here, the quasi-static approach predicts that the film will fall to zero while, in practice, there will always be a finite clearance between the surfaces. It was shown in a previous paper that this minimum clearance depends upon the rate of change of entrainment velocity, and limit expressions for the film thicknesses in the four regimes of lubrication were developed. The present paper examines the transition between the rigid-isoviscous and the elastic-isoviscous regimes and determines how the minimum film thickness behaves in this transition zone.

Author(s):  
C J Hooke

In many line contacts the operating conditions, such as load, entrainment velocity and contact radii, vary with time. Generally, the results from standard elastohydrodynamic lubrication theory, derived for constant conditions, can be used to obtain a quasi-steady prediction of film thickness that is sufficiently accurate for design purposes. An important exception to this is where the entrainment direction changes because, under those conditions, the quasi-steady approach predicts that there will be no clearance between the surfaces while in practice a residual film will persist. A previous paper showed that the minimum film thickness during entrainment reversal depends primarily on the rate of change of entrainment velocity. Limit expressions for the minimum clearance in the four regimes of lubrication were obtained. The present paper is part of a programme to develop a minimum film thickness chart for entrainment reversal and deals with the transition between the rigid-piezoviscous and the elastic-piezoviscous regimes.


1993 ◽  
Vol 115 (1) ◽  
pp. 191-199 ◽  
Author(s):  
C. J. Hooke

In contacts, such as cams, non-involute gears and shaft seals, where the direction of entrainment reverses during the operating cycle, the minimum film thickness is typically found just after the reversal. This paper shows that this minimum film thickness is determined by the rate of change of the entraining velocity and by the fluid and surface properties. For line contacts, four regimes of lubrication are found—as for the steady-state situation—and expressions for the film thickness in each regime are developed. This enables an outline design chart for the minimum film thickness to be constructed. It is shown that this information, together with the steady-state predictions is sufficient to determine the variation of film thickness with time in most situations where load, radius of curvature, and entraining velocity vary.


Author(s):  
C J Hooke

In most line contacts the load, effective radius of curvature and entraining velocity change with time. Generally this is ignored when calculating the film thickness and a quasi-steady solution is obtained. Under most conditions the errors introduced by this are either small or are not critical. However, when the entraining velocity reverses, as, for example, in some designs of cams, the quasi-steady approach predicts that the film thickness will be zero. In practice a residual film persists and can provide adequate surface separation. Previous papers by the author have shown that the minimum film thickness at entrainment reversal depends on the rate of change of the entraining velocity. Expressions for the film thickness in the four regimes of lubrication—rigid isoviscous, rigid piezoviscous, elastic isoviscous and elastic piezoviscous—were obtained and the variations of the film thickness in the transitions between adjacent regimes examined. The present paper examines the region where more than two regimes overlap. The values of film thickness obtained are then used to develop an interpolation procedure for the accurate calculation of the minimumfilm thickness under all operating conditions.


1994 ◽  
Vol 116 (3) ◽  
pp. 621-627 ◽  
Author(s):  
H. Desbordes ◽  
M. Fillon ◽  
C. Chan Hew Wai ◽  
J. Frene

A theoretical nonlinear analysis of tilting-pad journal bearings is presented for small and large unbalance loads under isothermal conditions. The radial displacements of internal pad surface due to pressure field are determined by a two-dimensional finite element method in order to define the actual film thickness. The influence of pad deformations on the journal orbit, on the minimum film thickness and on the maximum pressure is studied. The effects of pad displacements are to decrease the minimum film thickness and to increase the maximum pressure. The orbit amplitude is also increased by 20 percent for the large unbalance load compared to the one obtained for rigid pad.


Author(s):  
C. J. Hooke

In heavily loaded elastohydrodynamic (EHD) lubrication contacts operating in the piezoviscous regime, the original surface roughness is largely flattened as it enters the conjunction and is replaced by an inlet generated clearance variation. This clearance variation is convected through the contact at the entrainment velocity. It has a spatial distribution that differs (except for rolling without slip) from the original surface and a different amplitude. This amplitude may be smaller or greater than that of the original profile. An analytical solution of this behaviour is presented for contacts operating well inside the elastic piezoviscous regime for the situation where the roughness is relatively small compared with the film thickness. This solution allows the main features of surface roughness modification to be understood and produces results that compare well with the few numerical solutions available.


1986 ◽  
Vol 108 (4) ◽  
pp. 545-550 ◽  
Author(s):  
C. J. Hooke

A method is described for the calculation of the film thicknesses in soft, highly deformed contacts for situations where the entrainment velocity is not constant. Two particular results are presented. It is shown that, where there is a rapid reversal of motion, the steady state analysis remains acceptable. However, for a contact reciprocating with a sinusoidal motion, it does not, and here the minimum film thickness occurs at the end of the stroke. The minimum film thickness lies at the end of the contact furthermost from the area swept during the stroke and can only be determined by a dynamic analysis.


1986 ◽  
Vol 108 (4) ◽  
pp. 551-556 ◽  
Author(s):  
A. A. Lubrecht ◽  
W. E. ten Napel ◽  
R. Bosma

Film thickness and pressure profiles have been calculated for line contacts at moderate and high loads, using a Multigrid method. Influence of the compressibility of the lubricant on the minimum film thickness and on the pressure spike has been examined. The required computing time is an order of magnitude less than when using the previous methods.


Author(s):  
J-D Wheeler ◽  
N Fillot ◽  
P Vergne ◽  
D Philippon ◽  
GE Morales Espejel

The study reported here deals with elastohydrodynamic point contacts and it is focused on the influence of contact ellipticity. In five velocity–load reference cases, ellipticity was varied from slender to wide configurations, including the circular contact. For each case, Hertzian pressure, Hertzian area, load, and entrainment velocity were kept constant while the ellipticity was varied by changing the curvature radii. In this context, the maximum central film thickness did not occur for the infinitely wide contact, but for a slender configuration close to the circular case. Moreover, the minimum film thickness reached its optimum for a wide but finite elliptical contact. For low ellipticity ratios, specific film thickness features were obtained. In particular, very high central/minimum film thickness ratios are found. The cause of these behaviors was found in the change of the convergent shape. When the ellipticity was varied, the Poiseuille flows parallel and transverse to the entrainment direction were significantly modified and these modifications were quantitatively analyzed for the different cases. The competition between the Couette and the Poiseuille flows was totally different between the narrow and the wide elliptical contact, and this change was responsible for the film thickness variations with ellipticity. Ellipticity also had an effect on friction as it influenced the maximum pressure which in turn impacts the fluid viscosity.


2012 ◽  
Vol 538-541 ◽  
pp. 1939-1944
Author(s):  
Yan Fei Wang ◽  
Tong Shu Hua ◽  
Hao Yang Sun

To make further researches into the elastohydrodynamic lubrication properties of a finite line contact roller, oscillating experiments were carried out on made overload experimental rig for oil film measurement using optical interference technique. Film thickness and shape were measured in two kinds of viscosity polyisobutylene. This study indicates that both lubricant viscosity and roller entrainment velocity play an important role on EHL of finite line contacts. On motion, the more increase in viscosity or speed, the thicker the oil film thickness, simultaneity edge effect is distinctly intensified and film thickness increases less on roller end, difference of the film thickness is increased between roller end and the central. Above two parameters are significant for logarithmic profile roller in crowning design.


2021 ◽  
pp. 1-21
Author(s):  
Wassim Habchi

Abstract This work presents a comprehensive numerical study of thermal elastohydrodynamic lubrication performance in axially crowned rollers, based on a full-system finite element approach. Axial crowning has always been introduced to finite line contacts, as a mean for improving film thickness. Its influence on friction has often been overlooked though. The current work reveals that axial crowning has a negative influence on friction, increasing it significantly with respect to the reference case of straight rollers. It is shown that, with increased crowning height (or reduced crowning radius), minimum film thickness is increased, but so is friction. Therefore, film thickness enhancement comes at the expense of a deterioration in friction. Besides, achieving sufficient enhancements in minimum film thickness would require using relatively low crowning radii, which would lead to a substantial increase in friction. The frictional increase is traced back to an overall increase in contact pressures and effective contact area within the lubricating conjunction. It is also shown that, when film thickness is the most critical design parameter, the best compromise between enhanced film thickness and deteriorated friction would be to combine axial crowning with roller-end profiling. However, when friction is the most critical design parameter, a simple roller-end profiling would offer the best compromise.


Sign in / Sign up

Export Citation Format

Share Document