Finite Element Analysis of Synchronous Belt Tooth Failure

Author(s):  
K W Dalgarno ◽  
A J Day ◽  
T H C Childs

This paper describes a finite element analysis of a synchronous belt tooth under operational loads and conditions with the objective of obtaining a greater understanding of belt failure by tooth root cracking through an examination of the strains within the facing fabric in the belt. The analysis used the ABAQUS finite element program, and was based on a two-dimensional finite element model incorporating a hyperelastic material model for the elastomer compound. Contact between the belt tooth face and the pulley groove was modelled using surface interface elements which allowed only compression and shear forces at the contact surfaces. It is concluded that the critical strains in the facing fabric of the belt, and therefore the belt life, are largely determined by the tangential loading condition on the belt teeth.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhangxin Guo ◽  
Zhiqiang Yu ◽  
Shiyi Wei ◽  
Guoliang Qi ◽  
Yongcun Li ◽  
...  

PurposeThe cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.Design/methodology/approachFinite element method is employed in this work.FindingsThe simulated results match the experimental results well, which demonstrates the finite element analysis models are reliable. Compared with the one- and two-dimensional finite element analysis, temperature and degree of cure can be calculated at any point within composite structures in the present simulation analysis. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.Originality/valueA coupled thermokinetic simulation of the liquid composite molding process based on a three-dimensional finite element method is presented. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2003 ◽  
Vol 15 (02) ◽  
pp. 82-85 ◽  
Author(s):  
SHYH-CHOUR HUANG ◽  
CHANG-FENG TSAI

This paper presents results from using a 3-dimensional finite element model to assess the stress distribution in the bone, in the implant and in the abutment as a function of the implant's diameter and length. Increasing implant diameter and length increases the stability of the implant system. By using a finite element analysis, we show that implant length does not decrease the stress distribution of either the implant or the bone. Alternatively, however implant diameter increases reduce the stresses. For the latter case, the contact area between implant and bone is increased thus the stress concentration effect is decreased. Also, with increased implant diameter the bone loss is decreased and as a consequence the success rate is improved.


1991 ◽  
Vol 226 ◽  
Author(s):  
Yi-Hsin Pao ◽  
Kuan-Luen Chen ◽  
An-Yu Kuo

AbstractA nonlinear and time dependent finite element analysis was performed on two surface mounted electronic devices subjected to thermal cycling. Constitutive equations accounting for both plasticity and creep for 37Pb/63Sn and 90Pb/10Sn solders were assumed and implemented in a finite element program ABAQUS with the aid of a user subroutine. The FE results of 37Pb/63Sn solder joints were in reasonably good agreement with the experimental data by Hall [19]. In the case of 9OPb/1OSn solder in a multilayered transistor stack, the FE results showed the existence of strong peel stress near the free edge of the joint, in addition to the anticipated shear stress. The effect of such peel stress on the crack initiation and growth as a result of thermal cycling was discussed, together with the singular behavior of both shear and peel stresses near the free edge.


2017 ◽  
Vol 24 (3) ◽  
pp. 415-422 ◽  
Author(s):  
Ke Chun Shen ◽  
Guang Pan ◽  
JiangFeng Lu

AbstractThe buckling and layer failure characteristics of composite laminated cylinders subjected to hydrostatic pressure were investigated through finite element analysis for underwater vehicle application. The Tsai-Wu failure criteria were used as the failure criteria for the buckling analysis. A sensitivity analysis was conducted to research the influence of the number of elements on the critical buckling pressure. ANSYS, a finite element program, successfully predicted the buckling pressure with 5.3–27.8% (linear) and 0.3–22.5% (nonlinear) deviation from experimental results. The analysis results showed that the cylinders can carry more pressure after a slight decrease in pressure and recovery of the supporting load. For layer failure analysis, it was found that the failure that occurred in the 0° layer was more serious than that in the 90° layer within the neighboring layers at the inner layers (nos. 1–7) and outer layers (nos. 8–24).


2012 ◽  
Vol 594-597 ◽  
pp. 2723-2726
Author(s):  
Wen Shan Lin

In the present study, the constitutive law of the deformation theory of plasticity has been derived. And that develop the two-dimensional and three-dimensional finite element program. The results of finite element and analytic of plasticity are compared to verify the derived the constitutive law of the deformation theory and the FEM program. At plastic stage, the constitutive laws of the deformation theory can be expressed as the linear elastic constitutive laws. But, it must be modified by iteration of the secant modulus and the effective Poisson’s ratio. Make it easier to develop finite element program. Finite element solution and analytic solution of plasticity theory comparison show the answers are the same. It shows the derivation of the constitutive law of the deformation theory of plasticity and finite element analysis program is the accuracy.


2010 ◽  
Vol 118-120 ◽  
pp. 147-150
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Yong Gao ◽  
Wen Lin Liu ◽  
Zhong Hu Jia

Three-dimensional finite element model of a cracked bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of load transfer were compared with results from finite element analysis. The results show that three-dimensional finite element model of cracked bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of hole mod and crack on the load transfer behaviour of single lap bolted joints. The results show that hole mode has big effect on load transfer of cracked bolted joint. In the whole progress of crack growth, the load transfer through bolt 1 decrease, and almost all of the load duduction of bolt 1 transfer into blot 2 rather than into bolt 3.


2020 ◽  
Author(s):  
Zhun Xu ◽  
Yikai Li ◽  
Shaoqun Zhang ◽  
Liqing Liao ◽  
Kai Wu ◽  
...  

Abstract Background: Clinical studies have found that manipulations have a good clinical effect on sacroiliac joint (SIJ) pain without specific causes. However, the specific mechanisms of manipulations are still unclear. The purpose of this study was to investigate the effects of three common manipulations on the pressures and displacements of SIJ, and the strains of the surrounding ligaments. Methods: A three-dimensional finite element model of the pelvis-femur was developed. The manipulation of hip and knee flexion (MHKF), the manipulation of oblique pulling (MOP), and the manipulation of lower limb hyperextension (MLLH) were simulated. The pressures and displacements of SIJs, and the strains of the surrounding ligaments were analyzed under the three manipulations. Results: The MOP produced the greatest pressure on the left SIJ, at 6.6 MPa, while the MHKF could produce the lowest pressure on the right SIJ, at 1.5 MPa. The displacements of SIJs were all less than 1mm in the three manipulations. The three manipulations could cause different degrees of the strains of ligaments around the SIJs, and the MOP could produce the largest strain of ligaments. Conclusion: The three manipulations all produced small displacements of SIJs, while they caused different degrees of ligament strains, which might be the reason for relieving the SIJ pain. The MOP may be a more effective manual therapy. Key words: Manipulation, Sacroiliac joint, Displacement, Ligament strain, Finite element analysis.


Fibers ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 52 ◽  
Author(s):  
Amgad Elbehiry ◽  
Marwan Mostafa

One of the challenges of the century is to reach compatibility between the required resistance and the usage of lightweight building materials that may negatively affect the mechanical properties. Natural fibers nowadays are used as enhancers in the industrial field. Hence, the fibers contribute by giving an ideal solution to improve mechanical proprieties of the structural elements such as tensile and impact strength. In previous studies, the use of natural fibers as reinforcement in construction materials has increased. Natural fibers have a lot of characteristics such as being strong, lightweight, inexpensive, and eco-friendly. This paper aims to investigate the performance of banana fiber bars (BFB) as reinforced material. Through this study, the development and characterization of natural fibers-based composite beams were observed. After the beams were designed, several types of finite element analysis were conducted using ‘ANSYS’ nonlinear finite element program under one-point loading. Results show good correlations between experimental and predicted results.


2010 ◽  
Vol 97-101 ◽  
pp. 3924-3927 ◽  
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Zhong Hu Jia ◽  
Yong Gao ◽  
Wen Lin Liu

Three-dimensional finite element model of a bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of surface strains and load transfer ratio(LTR) were compared with results from finite element analysis. The results show that three-dimensional finite element model of bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of different parameters on the mechanical behaviour of single lap bolted joints. The results show that straight hole, small bolt diameter, and big hole pitch are selected first for bolted joint if other conditions allowed, and effect of bolt material on LTR of joint is small for small load. Interference and pre-stress should be strictly controlled for bolted joints in order to attain the best fatigue capability of lap joint.


Sign in / Sign up

Export Citation Format

Share Document