Finite Element Analysis of a Total Knee Replacement by Using Gauss Point Contact Constraints

Author(s):  
Z M Lim ◽  
J E Mottershead ◽  
P D Edwards ◽  
M P Whelan ◽  
R G English
Author(s):  
J E Mottershead ◽  
P D Edwards ◽  
M P Whelan ◽  
R G English

Finite element methods have been applied extensively and with much success in the analysis of orthopaedic hip and knee implants. Very recently a burgeoning interest has developed, in the finite element community, in how numerical models can be constructed for the solution of problems in contact mechanics. New developments in this area are of paramount importance in the design of implants for orthopaedic surgery. Modern techniques are described for finite element contact analysis and applied to two problems of stress analysis in a plastic tibial component. In the former, results are compared with a previous finite element analysis and with Hertzian solutions. In the latter, an estimate of the extent of convergence of the finite element solutions is provided.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2377
Author(s):  
Wisanupong Takian ◽  
Supakit Rooppakhun ◽  
Atthaphon Ariyarit ◽  
Sedthawatt Sucharitpwatskul

Total knee replacement is a standard surgical treatment used to treat osteoarthritis in the knee. The implant is complicated, requiring expensive designs and testing as well as a surgical intervention. This research proposes a technique concerning the optimal conformity design of the symmetric polyethylene tibial insert component for fixed-bearing total knee arthroplasty. The Latin Hypercube Sampling (LHS) design of the experiment was used to create 30 cases of the varied tibial insert conformity that influenced the total knee replacement wear volume. The combination of finite element analysis and a surrogate model was performed to predict wear volume according to the standard of ISO-14243:2014 wear test and to determine the optimal conformity. In the first step, the results could predict wear volume between 5.50 to 72.92 mm3/106 cycle. The Kriging method of a surrogate model has then created the increased design based on the efficient global optimization (EGO) method with improving data 10 design points. The result revealed that the optimum design of tibial insert conformity in a coronal and sagittal plane was 0.70 and 0.59, respectively, with a minimizing wear volume of 3.07 mm3/106 cycle. The verification results revealed that the area surface scrape and wear volume are similar to those predicted by the experiment. The wear behavior on the tibial insert surface was asymmetry of both sides. From this study it can be concluded that the optimal conformity design of the tibial insert component can be by using a finite element and surrogate model combined with the design of conformity to the minimized wear volume.


1992 ◽  
Vol 25 (12) ◽  
pp. 1413-1424 ◽  
Author(s):  
R.L. Rakotomanana ◽  
P.F. Leyvraz ◽  
A. Curnier ◽  
J.H. Heegaard ◽  
P.J. Rubin

2021 ◽  
Author(s):  
Morshed Khandaker ◽  
Onur Can Kalay ◽  
Fatih Karpat ◽  
Amgad Haleem ◽  
Wendy Williams ◽  
...  

2018 ◽  
Vol 77 ◽  
pp. 146-154 ◽  
Author(s):  
Liming Shu ◽  
Ko Yamamoto ◽  
Jiang Yao ◽  
Prabhav Saraswat ◽  
Yao Liu ◽  
...  

Author(s):  
Morshed Khandaker ◽  
Onur Can Kalay ◽  
Fatih Karpat ◽  
Amgad Haleem ◽  
Wendy Williams ◽  
...  

Abstract A method to improve the mechanical fixation of a total knee replacement (TKR) implant is clinically important and is the purpose of this study. More than one million joint replacement procedures are performed in people each year in the United States, and experts predict the number to increase six-fold by the year 2030. Whether cemented or uncemented, joint prostheses may destabilize over time and necessitate revision. Approximately 40,000 hip arthroplasty surgeries have to be revised each year and the rate is expected to increase by approximately 140% (and by 600% for total knee replacement) over the next 25 years. In veterinary surgery, joint replacement has a long history and the phenomenon of surgical revision is also well recognized. For the betterment of both people and animals, improving the longevity of arthroplasty devices is of the utmost clinical importance, and towards that end, several strategies are under investigation. One approach that we explore in the present research is to improve the biomechanical performance of cemented implant systems by altering the implant surface architecture in a way that facilitates its cement bonding capacity. Beginning with the Charnley system, early femoral stems were polished smooth, but a number of subsequent designs have featured a roughened surface — created with bead or grit blasting — to improve cement bonding. Failure at the implant-cement interface remains an issue with these newer designs, leading us to explore in this present research an alternate, novel approach to surface alteration — specifically, laser microgrooving. This study used various microgrooves architectures that is feasible using a laser micromachining process on a tibia tray (TT) for the goat TKR. Developing the laser microgrooving (LM) procedure, we hypothesized feasibility in producing parallel microgrooves of precise dimensions and spacing on both flat and round metallic surfaces. We further hypothesized that laser microgrooving would increase surface area and roughness of the cement interface of test metallic implants and that such would translate into an improved acute mechanical performance as assessed in vitro under both static and cyclic loads. The objective was to develop a computational model to determine the effect of LIM on the tibial tray to the mechanical stimuli distributions from implant to bone using the finite element method. This study designed goat TT 3D solid model from a computer topography (CT) images, out of which three different laser microgrooves were engraved on TT sample by varying depth, height and space between two adjacent grooves. The simulation test results concluded that microgrooves acchitecures positively influence microstrain behavior around the implant/bone interfaces. There is a higher amount of strain observed for microgroove implant/bone samples compared to non-groove implant/bone samples. Thus, the laser-induced microgrooves have the potential to be used clinically in TKR components.


Sign in / Sign up

Export Citation Format

Share Document