wear volume
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 143)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Vol 165 ◽  
pp. 107260
Author(s):  
Giacomo Maculotti ◽  
Edoardo Goti ◽  
Gianfranco Genta ◽  
Luigi Mazza ◽  
Maurizio Galetto

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1566
Author(s):  
Bauyrzhan Rakhadilov ◽  
Dauir Kakimzhanov ◽  
Daryn Baizhan ◽  
Gulnar Muslimanova ◽  
Sapargali Pazylbek ◽  
...  

This study is aimed at obtaining a coating of aluminum oxide containing α-Al2O3 as the main phase by detonation spraying, as well as a comparative study of the structural, tribological and mechanical properties of coatings with the main phases of α-Al2O3 and γ-Al2O3. It was experimentally revealed for the first time that the use of propane as a combustible gas and the optimization of the technological regime of detonation spraying leads to the formation of an aluminum oxide coating containing α-Al2O3 as the main phase. Tribological tests have shown that the coating with the main phase of α-Al2O3 has a low value of wear volume and coefficient of friction in comparison with the coating with the main phase of γ-Al2O3. It was also determined that the microhardness of the coating with the main phase of α-Al2O3 is 25% higher than that of the coatings with the main phase of γ-Al2O3. Erosion resistance tests have shown (evaluated by weight loss) that the coating with α-Al2O3 phase is erosion-resistant compared to the coating with γ-Al2O3 (seen by erosion craters). However, the coating with the main phase of γ-Al2O3 has a high value of adhesion strength, which is 2 times higher than that of the coating with the main phase of α-Al2O3. As the destruction of coatings by the primary phase, α-Al2O3 began at low loads than the coating with the main phase γ-Al2O3. The results obtained provide the prerequisites for the creation of wear-resistant, hard and durable layered coatings, in which the lower layer has the main phase of γ-Al2O3, and the upper layer has the main phase of α-Al2O3.


2021 ◽  
Author(s):  
CORINA BIRLEANU ◽  
MARIUS PUSTAN ◽  
MIRCEA CIOAZA ◽  
ANDREEA MOLEA ◽  
FLORIN POPA ◽  
...  

Abstract Titanium dioxide (TiO2) is a promising lubricant additive for enhanced engine efficiency. In this study, pure base engine oil 10 W-30 was improved with titanium dioxide (TiO2) nanoparticles at different concentrations and experimentally evaluated with the scope of tribological behavior improvement. The tribological tests were performed at ambient temperature as well as at 75°C using a four ball tribometer for 30 minutes. Due to their small particle size (approx. 21 nm), the TiO2 nanoparticles were properly dispersed in oil based on optical microscopy evaluation. The tribological results indicate that the friction coefficient of engine oil with 0.075 wt.% TiO2 reached 0.05 at 75°C, which was much lower that of pure oil (1.20), and at room temperature (23°C), it decreased from 1.8 for pure oil to 0.4 for oil with 0.075 wt.% TiO2 due to the formation of a stable tribofilm formed by the MoS2, MoO3, FeS, and FeSO4 composite within the wear track. The lowest wear volume was measured on samples tested at 75°C for the oil with 0.075 wt.% TiO2. The TiO2 additive lubricant effect on the tribofilm properties led to a decrease in friction and wear at an operating temperature of 75°C. The main objective of the paper is to present the recent progress and, consequently, to develop a comprehensive understanding of the tribological behavior of engine oil mixed with TiO2 nanoparticles.


2021 ◽  
Author(s):  
Wei Cao ◽  
Zhao Han ◽  
Ziqi Chen ◽  
Zili Jin ◽  
Jiajun Wu ◽  
...  

Abstract In the grinding process, the workpiece would not only be cut by abrasive grains, but also have adhesive wear caused by high temperature and heavy load, which makes the surface quality of the workpiece worse. In this paper, a wear test method considering speed, force, wear coefficient, temperature and hardness was proposed. A new wear prediction physical model was established based on finite element method and numerical simulation technology. The wear test was carried out on a grinding machine. The comprehensive research on the relationship between force, temperature, surface morphology and wear volume of grinding process was studied. The relationship between workpiece speed, grinding depth, cooling lubrication conditions and wear volume of grinding process was studied. The results show that the wear model can achieve numerical prediction and trend prediction of grinding temperature, surface profile and wear volume, the relative errors between the theoretical and actual values of wear and grinding temperature are 9.84% and 2.07% respectively. This study provides a support for wear prediction and surface quality control of grinding process from the perspective of temperature and micro material removal form.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2377
Author(s):  
Wisanupong Takian ◽  
Supakit Rooppakhun ◽  
Atthaphon Ariyarit ◽  
Sedthawatt Sucharitpwatskul

Total knee replacement is a standard surgical treatment used to treat osteoarthritis in the knee. The implant is complicated, requiring expensive designs and testing as well as a surgical intervention. This research proposes a technique concerning the optimal conformity design of the symmetric polyethylene tibial insert component for fixed-bearing total knee arthroplasty. The Latin Hypercube Sampling (LHS) design of the experiment was used to create 30 cases of the varied tibial insert conformity that influenced the total knee replacement wear volume. The combination of finite element analysis and a surrogate model was performed to predict wear volume according to the standard of ISO-14243:2014 wear test and to determine the optimal conformity. In the first step, the results could predict wear volume between 5.50 to 72.92 mm3/106 cycle. The Kriging method of a surrogate model has then created the increased design based on the efficient global optimization (EGO) method with improving data 10 design points. The result revealed that the optimum design of tibial insert conformity in a coronal and sagittal plane was 0.70 and 0.59, respectively, with a minimizing wear volume of 3.07 mm3/106 cycle. The verification results revealed that the area surface scrape and wear volume are similar to those predicted by the experiment. The wear behavior on the tibial insert surface was asymmetry of both sides. From this study it can be concluded that the optimal conformity design of the tibial insert component can be by using a finite element and surrogate model combined with the design of conformity to the minimized wear volume.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1501
Author(s):  
Shanshan Liu ◽  
Ming Pang

To improve the anti-wear and friction-reducing properties of self-lubricating coatings, Ni60/Nickel-coated graphite/TiB2 composite coatings with different contents were prepared by laser cladding. The coating properties were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy spectrometer (EDS), electrochemical workstation, micro-Vickers hardness tester, and friction and wear tester. The results showed that with the increase in TiB2 content, the graphite morphology changed from spherical at 0 wt.% TiB2 content to a little black graphite alone at 14 wt.% TiB2 to irregular agglomerates at 22 wt.% TiB2. Furthermore, the hardness of the coatings increased with increasing TiB2 content, and the 63% Ni60 + 15% nickel-coated graphite + 22% TiB2 coating had the highest hardness. TiC and Cr7C3 were generated in the coatings with the addition of nickel-coated graphite, creating a dispersion reinforcement effect, so that the hardness of these coatings was higher than that of the 86% Ni60 + 0% nickel-coated graphite + 14% TiB2 coating without the addition of nickel-coated graphite. In addition, the 71% Ni60 + 15% Ni-coated graphite + 14% TiB2 coating had the lowest friction coefficient, wear loss, and wear volume, thus exhibiting excellent friction reduction and anti-wear properties. The 71% Ni60 + 15% nickel-coated graphite + 14% TiB2 coating had excellent corrosion resistance.


2021 ◽  
Vol 5 (4) ◽  
pp. 237
Author(s):  
Junjie Meng ◽  
Xing Du ◽  
Yingming Li ◽  
Peng Chen ◽  
Fuchun Xia ◽  
...  

The wear problems are vital to the planetary roller screw mechanism (PRSM) as they have a great influence on transmission accuracy, working efficiency, and service life. However, the wear characteristics of the PRSM have been rarely investigated in the past. In this paper, a multiscale adhesive wear model is established by incorporating the effective wear coefficient and considering the thread surface roughness. The variation of surface roughness is characterized by the two-dimension Majumdar–Bhushan (MB) function. The multi-asperity contact regimes are used to estimate microcontact mechanics of the rough interface. Moreover, the influences of surface roughness, material properties, and working conditions on the wear depth and precision loss of the PRSM are studied in detail. The results reveal that as the surface roughness increases, the total actual contact area, wear depth, and precision loss rate rise. In addition, the adhesive wear increases with the growth of the axial load, and decreases with the increase in the material hardness and material elastic modulus ratio to a certain extent. The investigation opens up a theoretical methodology to predict the wear volume and precision loss with regard to thread surface roughness, which lays the foundation for the design, manufacturing, and application of the PRSM.


Lubricants ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 112
Author(s):  
Davide Massocchi ◽  
Giacomo Riboni ◽  
Nora Lecis ◽  
Steven Chatterton ◽  
Paolo Pennacchi

The coating materials commonly used in hydrodynamic bearings are the so-called “Babbitt metals” or “white metals”, as defined by ASTM B23-00. Their low Young’s modulus and yield point have encouraged researchers to find new coatings to overcome these limitations. In this paper, the friction and wear of PEEK are studied in a dry sliding environment (without lubrication) using a ball-on-disk tribometer and compared to those of Babbitt metal. Furthermore, the bond strength tests between PEEK and metals/alloys are evaluated. PEEK polymer samples were obtained from cylindrical rods, manufactured by an innovative process for polymer bonding on bearing surfaces, using additive manufacturing technology. The morphologies of the degraded surfaces were examined using a high-resolution metallurgical optical microscope (OM) and a scanning electron microscope (SEM). The coefficients of friction (CoF) were obtained under the alternating ball-on-disk dry tribometer. The results of the experimental activity show that PEEK polymers have CoFs of about 0.22 and 0.16 under the 1 and 5 N applied load, respectively. The CoF and wear volume loss results are reported and compared to the reference Babbitt coating.


2021 ◽  
Author(s):  
Asgar Eyvazi Farab ◽  
Khalil Shahbazi ◽  
Abdolnabi Hashemi ◽  
Alireza Shahbazi

Abstract Casing wear is an essential and complex phenomenon in oil and gas wells. Research is being conducted to predict this phenomenon. This study was conducted at a well in southwestern Iran. In this paper, first examine the force exerted on the drill string. Next, the contact force between the drill string and the casing is calculated. Finally, the wear volume and the depth of the wear groove are determined. These calculations were performed using MATLAB and Python software. In addition, due to the high accuracy of coding, mud log data was used to make the results more accurate. It has also been shown that increasing RPM increases the depth of wear and attempts to drill a highly deviated wells as a sliding mode. Finally, compared the results and matched them with the wireline logs recorded from the well.


2021 ◽  
pp. 1-24
Author(s):  
Manuel Reichelt ◽  
Brunero Cappella

Abstract Wear phenomena at the nanoscale are essential for applications involving miniaturized specimens. Furthermore, stochastic nano-events affect in general tribological processes, eventually also at the macroscale. Hence, it is of fundamental importance to perform nanotests with materials – such as steel – which are widely used also at the macroscale. In this paper, we present the analysis of tribotests performed with self-mated 100Cr6 steel (AISI 52100) at the submicron scale by means of an atomic force microscope. To this aim, steel particles with micrometre size were glued to the cantilever as “colloidal particles”. The microscope was employed for wear generation, for the imaging of scars and colloidal particles, and for the determination of wear volumes of both specimens. The analysis is focused on wear volume and its dependence on normal force and total sliding distance. Nanotests are compared with previously presented macrotests, also performed with self-mated steel. Nanotests exhibit, compared with macrotests, a significantly larger scattering and poor repeatability. Especially the analysis of these features reveals that, with small forces (≤ 10 µN) and surfaces (≤ 2 µm2), the random number of asperities inside the contact surface plays a crucial role, by far more decisive than the normal force or the sliding distance. Moreover, in several cases, only few asperities (< 10) are involved in the wear process. Such low numbers lead to a breakdown in the applicability of tribological laws (e.g. Archard's law) based on statistical methods and on average variables.


Sign in / Sign up

Export Citation Format

Share Document