The Formation of Hydrophobic Core Regulates the Protein Folding of Villin Elucidated with Parallel Cascade Selection Molecular Dynamics

2018 ◽  
Vol 47 (10) ◽  
pp. 1300-1303
Author(s):  
Ryuhei Harada ◽  
Hayato Aida ◽  
Yasuteru Shigeta
Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Iwona Sadura ◽  
Dariusz Latowski ◽  
Jana Oklestkova ◽  
Damian Gruszka ◽  
Marek Chyc ◽  
...  

Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 °C, whereas in the hydrophobic core, they were visible at both 20 and 5 °C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 °C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts.


2021 ◽  
Vol 22 (14) ◽  
pp. 7375
Author(s):  
Julie Ledoux ◽  
Alain Trouvé ◽  
Luba Tchertanov

The kinase insert domain (KID) of RTK KIT is the key recruitment region for downstream signalling proteins. KID, studied by molecular dynamics simulations as a cleaved polypeptide and as a native domain fused to KIT, showed intrinsic disorder represented by a set of heterogeneous conformations. The accurate atomistic models showed that the helical fold of KID is mainly sequence dependent. However, the reduced fold of the native KID suggests that its folding is allosterically controlled by the kinase domain. The tertiary structure of KID represents a compact array of highly variable α- and 310-helices linked by flexible loops playing a principal role in the conformational diversity. The helically folded KID retains a collapsed globule-like shape due to non-covalent interactions associated in a ternary hydrophobic core. The free energy landscapes constructed from first principles—the size, the measure of the average distance between the conformations, the amount of helices and the solvent-accessible surface area—describe the KID disorder through a collection of minima (wells), providing a direct evaluation of conformational ensembles. We found that the cleaved KID simulated with restricted N- and C-ends better reproduces the native KID than the isolated polypeptide. We suggest that a cyclic, generic KID would be best suited for future studies of KID f post-transduction effects.


What is the basis for the two-state cooperativity of protein folding? Since the 1950s, three main models have been put forward. 1. In ‘helix-coil’ theory, cooperativity is due to local interactions among near neighbours in the sequence. Helix-coil cooperativity is probably not the principal basis for the folding of globular proteins because it is not two-state, the forces are weak, it does not account for sheet proteins, and there is no evidence that helix formation precedes the formation of a hydrophobic core in the folding pathways. 2. In the ‘sidechain packing’ model, cooperativity is attributed to the jigsaw-puzzle-like complementary fits of sidechains. This too is probably not the basis of folding cooperativity because exact models and experiments on homopolymers with sidechains give no evidence that sidechain freezing is two-state, sidechain complementarities in proteins are only weak trends, and the molten globule model predicted by this model is far more native-like than experiments indicate. 3. In the ‘hydrophobic core collapse’ model, cooperativity is due to the assembly of non-polar residues into a good core. Exact model studies show that this model gives two-state behaviour for some sequences of hydrophobic and polar monomers. It is based on strong forces. There is considerable experimental evidence for the kinetics this model predicts: the development of hydrophobic clusters and cores is concurrent with secondary structure formation. It predicts compact denatured states with sizes and degrees of disorder that are in reasonable agreement with experiments.


2016 ◽  
Vol 18 (18) ◽  
pp. 13052-13065 ◽  
Author(s):  
Emanuel K. Peter ◽  
Joan-Emma Shea ◽  
Igor V. Pivkin

In this paper, we present a coarse replica exchange molecular dynamics (REMD) approach, based on kinetic Monte Carlo (kMC).


2004 ◽  
Vol 108 (21) ◽  
pp. 6571-6581 ◽  
Author(s):  
William C. Swope ◽  
Jed W. Pitera ◽  
Frank Suits

Sign in / Sign up

Export Citation Format

Share Document