collapse model
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 28)

H-INDEX

25
(FIVE YEARS 2)

Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Ronaldo C. Batista

We review dark energy models that can present non-negligible fluctuations on scales smaller than Hubble radius. Both linear and nonlinear evolutions of dark energy fluctuations are discussed. The linear evolution has a well-established framework, based on linear perturbation theory in General Relativity, and is well studied and implemented in numerical codes. We highlight the main results from linear theory to explain how dark energy perturbations become important on the scales of interest for structure formation. Next, we review some attempts to understand the impact of clustering dark energy models in the nonlinear regime, usually based on generalizations of the Spherical Collapse Model. We critically discuss the proposed generalizations of the Spherical Collapse Model that can treat clustering dark energy models and their shortcomings. Proposed implementations of clustering dark energy models in halo mass functions are reviewed. We also discuss some recent numerical simulations capable of treating dark energy fluctuations. Finally, we summarize the observational predictions based on these models.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 594
Author(s):  
Antoine Tilloy ◽  
Howard M. Wiseman

Spontaneous collapse models and Bohmian mechanics are two different solutions to the measurement problem plaguing orthodox quantum mechanics. They have, a priori nothing in common. At a formal level, collapse models add a non-linear noise term to the Schrödinger equation, and extract definite measurement outcomes either from the wave function (e.g. mass density ontology) or the noise itself (flash ontology). Bohmian mechanics keeps the Schrödinger equation intact but uses the wave function to guide particles (or fields), which comprise the primitive ontology. Collapse models modify the predictions of orthodox quantum mechanics, whilst Bohmian mechanics can be argued to reproduce them. However, it turns out that collapse models and their primitive ontology can be exactly recast as Bohmian theories. More precisely, considering (i) a system described by a non-Markovian collapse model, and (ii) an extended system where a carefully tailored bath is added and described by Bohmian mechanics, the stochastic wave-function of the collapse model is exactly the wave-function of the original system conditioned on the Bohmian hidden variables of the bath. Further, the noise driving the collapse model is a linear functional of the Bohmian variables. The randomness that seems progressively revealed in the collapse models lies entirely in the initial conditions in the Bohmian-like theory. Our construction of the appropriate bath is not trivial and exploits an old result from the theory of open quantum systems. This reformulation of collapse models as Bohmian theories brings to the fore the question of whether there exists `unromantic' realist interpretations of quantum theory that cannot ultimately be rewritten this way, with some guiding law. It also points to important foundational differences between `true' (Markovian) collapse models and non-Markovian models.


2021 ◽  
Vol 925 ◽  
Author(s):  
Jonathan M. Barnard

An experimental study on stratified particle-laden plumes is presented and five steady-state flow regimes have been identified. The steady-state behaviour of the plume is directly related to the magnitude of the convective velocity associated with particle-induced instabilities, $U_c$ , in relation to the terminal settling velocity of each individual particle, $u_{st}$ . When $u_{st}>U_c$ , the ratio of particle to fluid buoyancy flux at the source, $P$ , becomes important. For $P<0.2$ , the plume dynamics appears very similar to a single-phase plume as particle recycling has minimal impact on the steady-state plume height. When $P>0.2$ , the plume height decreases significantly, creating an anvil-shaped intrusion similar to those associated with explosive volcanic eruptions. Importantly, the measured steady-state heights of plumes within this settling regime validate the collapse model of Apsley & Lane-Serff (J. Fluid Mech., vol. 865, 2019, pp. 904–927). When $u_{st}\leqslant U_c$ , particle re-entrainment behaviour changes significantly and the plume dynamics becomes independent of $P$ . When $u_{st}\approx U_c$ , a trough of fluid becomes present in the sedimenting veil due to a significant flux of descending particles at the edge of the plume. Once $u_{st}< U_c$ , the particles spreading in the intrusion become confined to a defined radius around the plume due to the significant ambient convection occurring beneath the current. For $u_{st}\ll U_c$ , or in the case of these experiments, when $U_c\geqslant 1\ \text{cm s}^{-1}$ , ambient convection becomes so strong that intrusion fluid is pulled down to the plume source, creating a flow reminiscent of a stratified fountain with secondary intrusions developing between the original current and the tank floor. Through an extension of the work of Cardoso & Zarrebini (Chem. Engng Sci., vol. 56, issue 11, 2001a, pp. 3365–3375), an analytical expression is developed to determine the onset of convection in the environment beyond the edge of the plume, which for a known particle settling velocity, can be used to characterise a plume's expected settling regime. In all plume regimes, the intrusion fluid is observed to rise in the environment following the sedimentation of particles and a simple model for the change in intrusion fluid height has been developed using the steady-state particle concentration at the spreading level.


COVID ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 288-302
Author(s):  
Fernando Bergasa-Caceres ◽  
Herschel A. Rabitz

In recent work, we proposed that effective therapeutic drugs aimed at treating the SARS-CoV-2 infection could be developed based on interdicting in the early steps of the folding pathway of key viral proteins, including the receptor binding domain (RBD) of the spike protein. In order to provide for a drug target on the protein, the earliest contact-formation event along the dominant folding pathway of the RBD spike protein was predicted employing the Sequential Collapse Model (SCM). The segments involved in the predicted earliest contact were suggested to provide optimal folding interdiction target regions (FITRs) for potential therapeutic drugs, with a focus on folding interdicting peptides (FIPs). In this paper, we extend our analysis to include 13 known single mutations of the RBD spike protein as well as the triple mutation B1.351 and the recent double mutation B1.617.2. The results show that the location of the FITR does not change in any of the 15 studied mutations, providing for a mutation-resistant drug design strategy for the RBD-spike protein.


2021 ◽  
Vol 22 (16) ◽  
pp. 8619
Author(s):  
Fernando Bergasa-Caceres ◽  
Herschel A. Rabitz

The initial steps of the folding pathway of the C-terminal domain of the murine prion protein mPrP(90–231) are predicted based on the sequential collapse model (SCM). A non-local dominant contact is found to form between the connecting region between helix 1 and b-sheet 1 and the C-terminal region of helix 3. This non-local contact nucleates the most populated molten globule-like intermediate along the folding pathway. A less stable early non-local contact between segments 120–124 and 179–183, located in the middle of helix 2, promotes the formation of a less populated molten globule-like intermediate. The formation of the dominant non-local contact constitutes an example of the postulated Nature’s Shortcut to the prion protein collapse into the native structure. The possible role of the less populated molten globule-like intermediate is explored as the potential initiation point for the folding for three pathogenic mutants (T182A, I214V, and Q211P in mouse prion numbering) of the prion protein.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Sandro Donadi ◽  
Kristian Piscicchia ◽  
Raffaele Del Grande ◽  
Catalina Curceanu ◽  
Matthias Laubenstein ◽  
...  

AbstractWe study spontaneous radiation emission from matter, as predicted by the Continuous Spontaneous Localization (CSL) collapse model. We show that, in an appropriate range of energies of the emitted radiation, the largest contribution comes from the atomic nuclei. Specifically, we show that in the energy range $$E\sim 10\,-\,10^{5}$$ E ∼ 10 - 10 5 keV the contribution to the radiation emission from the atomic nuclei grows quadratically with the atomic number of the atom, overtaking the contribution from the electrons, which grows only linearly. This theoretical prediction is then compared with the data from a dedicated experiment performed at the extremely low background environment of the Gran Sasso underground National Laboratory, where the radiation emitted form a sample of Germanium was measured.As a result, we obtain the strongest bounds on the CSL parameters for $$r_C\le 10^{-6}$$ r C ≤ 10 - 6 m, improving the previous ones by more than an order of magnitude.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe4507
Author(s):  
Natalee D. Newton ◽  
Joshua M. Hardy ◽  
Naphak Modhiran ◽  
Leon E. Hugo ◽  
Alberto A. Amarilla ◽  
...  

Flaviviruses are the cause of severe human diseases transmitted by mosquitoes and ticks. These viruses use a potent fusion machinery to enter target cells that needs to be restrained during viral assembly and egress. A molecular chaperone, premembrane (prM) maintains the virus particles in an immature, fusion-incompetent state until they exit the cell. Taking advantage of an insect virus that produces particles that are both immature and infectious, we determined the structure of the first immature flavivirus with a complete spike by cryo–electron microscopy. Unexpectedly, the prM chaperone forms a supporting pillar that maintains the immature spike in an asymmetric and upright state, primed for large rearrangements upon acidification. The collapse of the spike along a path defined by the prM chaperone is required, and its inhibition by a multivalent immunoglobulin M blocks infection. The revised architecture and collapse model are likely to be conserved across flaviviruses.


2021 ◽  
pp. 2150082
Author(s):  
A. H. Ziaie ◽  
H. Shabani ◽  
S. Ghaffari

In recent years, Rastall gravity is undergoing a considerable surge in popularity. This theory purports to be a modified gravity theory with a non-conserved energy–momentum tensor (EMT) and an unusual non-minimal coupling between matter and geometry. This work looks for the evolution of homogeneous spherical perturbations within the Universe in the context of Rastall gravity. Using the spherical Top-Hat collapse model, we seek for exact solutions in linear regime for density contrast of dark matter (DM) and dark energy (DE). We find that the Rastall parameter affects crucially the dynamics of density contrasts for DM and DE and the fate of spherical collapse is different in comparison to the case of general relativity (GR). Numerical solutions for perturbation equations in nonlinear regime reveal that DE perturbations could amplify the rate of growth of DM perturbations depending on the values of Rastall parameter.


Sign in / Sign up

Export Citation Format

Share Document