X-Ray Fhotoelectron Spectroscopic Studies of Lanthanum Oxide Based Oxidative Coupling of Methane Catalysts

1990 ◽  
Vol 19 (6) ◽  
pp. 967-970 ◽  
Author(s):  
Jean-Luc Dubois ◽  
Michel Bisiaux ◽  
Hubert Mimoun ◽  
Charles J. Cameron
Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 290
Author(s):  
Tim Karsten ◽  
Vesna Middelkoop ◽  
Dorota Matras ◽  
Antonis Vamvakeros ◽  
Stephen Poulston ◽  
...  

This work presents multi-scale approaches to investigate 3D printed structured Mn–Na–W/SiO2 catalysts used for the oxidative coupling of methane (OCM) reaction. The performance of the 3D printed catalysts has been compared to their conventional analogues, packed beds of pellets and powder. The physicochemical properties of the 3D printed catalysts were investigated using scanning electron microscopy, nitrogen adsorption and X-ray diffraction (XRD). Performance and durability tests of the 3D printed catalysts were conducted in the laboratory and in a miniplant under real reaction conditions. In addition, synchrotron-based X-ray diffraction computed tomography technique (XRD-CT) was employed to obtain cross sectional maps at three different positions selected within the 3D printed catalyst body during the OCM reaction. The maps revealed the evolution of catalyst active phases and silica support on spatial and temporal scales within the interiors of the 3D printed catalyst under operating conditions. These results were accompanied with SEM-EDS analysis that indicated a homogeneous distribution of the active catalyst particles across the silica support.


2020 ◽  
Vol 22 (34) ◽  
pp. 18964-18975
Author(s):  
Dorota Matras ◽  
Antonis Vamvakeros ◽  
Simon D. M. Jacques ◽  
Vesna Middelkoop ◽  
Gavin Vaughan ◽  
...  

In situ XRD-CT and post-reaction SEM/EDX were used to study the solid-state chemistry and structural changes of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane reactors during the oxidative coupling of methane reaction.


1990 ◽  
Vol 6 (3-6) ◽  
pp. 395-400 ◽  
Author(s):  
T. Le Van ◽  
M. Che ◽  
M. Kermarec ◽  
C. Louis ◽  
J. M. Tatibouët

2019 ◽  
Vol 48 (9) ◽  
pp. 1145-1147 ◽  
Author(s):  
Upendar Kashaboina ◽  
Yuta Nishikawa ◽  
Yuki Wakisaka ◽  
Natee Sirisit ◽  
Shin-ichi Nagamatsu ◽  
...  

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Barbara Michorczyk ◽  
Jakub Sikora ◽  
Bogusława Kordon-Łapczyńska ◽  
Dorota Gaweł ◽  
Izabela Czekaj

The paper presents the research results obtained in the process of oxidative coupling of methane, in which unpurified biogas was used as the feedstock. Biogas obtained from two kinds of biomass materials, i.e., plant materials (potato and beet pulp, Corn-Cob-Mix—biogas 1) and animal waste (waste from fish filleting—biogas 2) was considered. The influence of temperature, the ratio of methane/oxygen and total flows of feedstock on the catalytic performance in oxidative coupling of methane process was investigated. Comparative tests were carried out using pure methane and a mixture of methane-carbon dioxide to simulate the composition of biogas 2. The process was carried out in the presence of an Mn-Na2WO4/SiO2 catalyst. Fresh and used catalysts were characterised by means of powder X-ray diffraction, X-ray photoelectron spectroscopy, and low-temperature nitrogen adsorption techniques. In oxidative coupling of methane, the type of raw material used as the source of methane has a small effect on methane conversion (the differences in methane conversion are below 3%), but a significant effect on the selectivity to C2. Depending on the type of raw material, the differences in selectivity to C2 reach as high as 9%. However, the Mn-Na2WO4/SiO2 catalyst operated steadily in the tested period of time at any feedstock composition. Moreover, it was found that CO2, which is the second main component of biogas in addition to methane, has an effect on catalytic performance. Comparative results of catalytic tests indicate that the CO2 effect varies with temperature. Below 1073 K, CO2 exerts a small poisoning effect on methane conversion, while above this temperature the negative effect of CO2 disappears. In the case of selectivity to C2+, the negative effect of CO2 was observed only at 1023 K. At higher temperatures, CO2 enhances selectivity to C2+. The effect of CO2 was established by correlating the catalytic results with the temperature programmed desorption of CO2 investigation. The poisoning effect of CO2 was connected with the formation of surface Na2CO3, whose concentration depends on temperature.


Sign in / Sign up

Export Citation Format

Share Document