Preparation of Mg/Al Layered Double Hydroxide–Oleate Intercalation Compound by a Reconstruction Method under Hydrothermal Condition

2005 ◽  
Vol 34 (6) ◽  
pp. 810-811 ◽  
Author(s):  
Makoto Ogawa ◽  
Kazuya Inomata
2009 ◽  
Vol 79-82 ◽  
pp. 493-496 ◽  
Author(s):  
Jian Qiang Liu ◽  
Xing Cheng Zhang ◽  
Wan Guo Hou ◽  
You Yong Dai ◽  
Hongdi Xiao ◽  
...  

In this paper, the intercalation of methyl-red (MR) into Mg/Al (ratio=2:1) layered double hydroxide (LDH) was carried out using reconstruction method to obtain MRLDH nanocomposite material. Its chemical composition, crystal structure and appearance were characterized by XRD, FT-IR, TEM, TG-DTA and element analysis. It has been found that the MRLDH still keeps the typical lamellar structure, and the guest MR has inserted into the layers of the host LDH. The MRLDH’s disassembly temperature is higher more than 70°C than that of guest molecule MR, so it can be used as a new dye with high thermal stability.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Tae-Hyun Kim ◽  
Gyeong Jin Lee ◽  
Joo-Hee Kang ◽  
Hyoung-Jun Kim ◽  
Tae-il Kim ◽  
...  

Objective. Layered double hydroxide (LDH) nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles.Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML), 5-FU/LDH (FL), and (MTX + 5-FU)/LDH (MFL) nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy.Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1281 ◽  
Author(s):  
Hyoung-Jun Kim ◽  
Su-Bin Lee ◽  
Ae-Jin Choi ◽  
Jae-Min Oh

We prepared Zingiber officinale extract (ZOE) incorporated in a layered double hydroxide (LDH) hybrid through a reconstruction method in order to preserve the antioxidant activity of ZOE from ultrasound and microwave irradiation. X-ray patterns, infrared spectroscopy, and scanning electron microscopy suggested that ZOE moieties were encapsulated in the interparticle space of reconstructed LDH, thus preserving its intact structure. Dynamic light scattering and zeta-potential measurement also supported the hypothesis that ZOE moieties were located in the interparticle pore of LDH rather than at the surface of LDH particles. Thermogravimetry analysis revealed that thermal stability of encapsulated ZOE could be enhanced by LDH encapsulation. Radical scavenging assay showed that antioxidant activity of ZOE–LDH hybrid was increased after ultrasound and microwave irradiation, while ZOE itself dramatically lost its antioxidant activity upon ultrasound and microwave treatment.


1989 ◽  
Vol 18 (11) ◽  
pp. 2057-2058 ◽  
Author(s):  
In Yong Park ◽  
Kazuyuki Kuroda ◽  
Chuzo Kato

Sign in / Sign up

Export Citation Format

Share Document