Photocatalytic Cycloaddition Reaction of Triarylphosphines with Alkynes Forming Cyclic Phosphonium Salts

2021 ◽  
Author(s):  
Yusuke Masuda ◽  
Daichi Ikeshita ◽  
Masahiro Murakami
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yubing Xiong ◽  
Feng Bai ◽  
Zipeng Cui ◽  
Na Guo ◽  
Rongmin Wang

Polymer-supported quaternary phosphonium salt (PS-QPS) was explored as effective catalyst for the coupling reaction of carbon dioxide with epoxides. The results indicated that cyclic carbonates with high yields (98.6%) and excellent selectivity (100%) could be prepared at the conditions of 5 MPa CO2, 150°C, and 6 h without the addition of organic solvents or cocatalysts. The effects of various reaction conditions on the catalytic performance were investigated in detail. The catalyst is applicable to a variety of epoxides, producing the corresponding cyclic carbonates in good yields. Furthermore, the catalyst could be recovered easily and reused for five times without loss of catalytic activity obviously. A proposed mechanism for synthesis of cyclic carbonate in the presence of PS-QPS was discussed. The catalyst was characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectrum. It is believed that PS-QPS is of great potential for CO2fixation applications due to its unusual advantages, such as easy preparation, high activity and selectivity, stability, low cost, and reusability.


2021 ◽  
Author(s):  
Yusuke Masuda ◽  
Daichi Ikeshita ◽  
Masahiro Murakami

Herein reported is a photocatalytic cycloaddition reaction of triarylphosphines with alkynes. Phosphonium salts of unique bicyclic structures are synthesized through a radical pathway under mild reaction conditions. The phosphonium salts are subjected to the Wittig olefination reaction to afford structurally interesting phosphine oxides.


2021 ◽  
Author(s):  
Yusuke Masuda ◽  
Daichi Ikeshita ◽  
Masahiro Murakami

Herein reported is a photocatalytic cycloaddition reaction of triarylphosphines with alkynes. Phosphonium salts of unique bicyclic structures are synthesized through a radical pathway under mild reaction conditions. The phosphonium salts are subjected to the Wittig olefination reaction to afford structurally interesting phosphine oxides.


2021 ◽  
Author(s):  
Yong Wang ◽  
Meng-Fan Wang ◽  
David James Young ◽  
Hua Zhu ◽  
Fei-Long Hu ◽  
...  

The bulkiness of the guest molecules influences the conformations of the ligand and the final outcomes of the cycloaddition reaction.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Miron Teodor Caproiu ◽  
Florea Dumitrascu ◽  
Mino R. Caira

New pyrrolo[1,2-b]pyridazine derivatives 8a-f were synthesized by 1,3-dipolar cycloaddition reaction between mesoionic 1,3-oxazolo[3,2-b]pyridazinium-2-oxides and diethyl or diisopropyl acetylenedicarboxylate as alkyne dipolarophiles. The structures of the new compounds were assigned by elemental analysis and NMR spectroscopy.


2019 ◽  
Vol 23 (16) ◽  
pp. 1738-1755
Author(s):  
Humaira Y. Gondal ◽  
Zain M. Cheema ◽  
Abdul R. Raza ◽  
Ahmed Abbaskhan ◽  
M. I. Chaudhary

Following numerous applications of Wittig reaction now functionalized phosphonium salts are gaining attention due to their characteristic properties and diverse reactivity. This review is focused on α-alkoxyalkyl triphenylphosphonium salts: an important class of functionalized phosphonium salts. Alkoxymethyltriphenylphosphonium salts are majorly employed in the carbon homologation of carbonyl compounds and preparation of enol ethers. Their methylene insertion strategy is extensively demonstrated in the total synthesis of a wide range of natural products and other important organic molecules. Similarly enol ethers prepared thereof are important precursors for different organic transformations like Diels-Alder reaction, Claisen rearrangement, Coupling reactions, Olefin metathesis and Nazarov cyclization. Reactivity of these α-alkoxyalkylphosphonium salts have also been studied in the nucleophilic substitution reactions. A distinctive application of this class of phosphonium salts was recently reported in the phenylation of carbonyl compounds under very mild conditions. Synthesis of structurally diverse alkoxymethyltriphenylphosphonium salts with variation in alkoxy groups as well as counter anions are reported in literature. Here we present a detailed account of different synthetic methodologies for the preparation of this unique class of quaternary phosphonium salts and their applications in organic synthesis.


2016 ◽  
Vol 13 (7) ◽  
pp. 467-473 ◽  
Author(s):  
Yi-Nan Cheng ◽  
Wen-Bo Jin ◽  
Li-Min Wang ◽  
Shu-Jun Sun ◽  
Gui-Ying Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document