scholarly journals The Formation Mechanism of C60Br6 from the Quantum Chemical Reactivity Indices.

1995 ◽  
pp. 169-176
Author(s):  
Takayuki OHMAE
2021 ◽  
Vol 10 (4) ◽  
pp. 489-502 ◽  
Author(s):  
M. Raftani ◽  
T. Abram ◽  
W. Loued ◽  
R. Kacimi ◽  
A. Azaid ◽  
...  

In the present paper, four π-conjugated materials, based on terphenyl and pyrrole, with A–D–A structure have been theoretically studied to propose new organic compounds to be used in the organic solar cell field. Moreover, the geometrical and optoelectronic properties of the designed molecules M1, M2, M3 and M4 have been computed after optimization in their fundamental states, using the quantum chemical method DFT / B3LYP/ 6−311G (d, p). Different parameters including HOMO and LUMO energy levels, bandgap energy, frontier molecular orbital (FMO), chemical reactivity indices, the density of states (DOS), Voc, electrostatic potential (ESP), and thermodynamic parameters at several temperatures in the range of 0-500 K have been determined. The absorption properties including the transition energy, the wavelengths (λmax), the excitation vertical energy, and the corresponding oscillator strengths of these molecules have been studied using the quantum chemical method TD−DFT / CAM–B3LYP / 6–311G (d, p). The obtained results of our studied compounds show that M3 (with 2H, 2'H-1, 1'-biisoindole moiety) as a donor group has special optoelectronic, absorption, and good photovoltaic characteristics. Thus, they can be utilized as an electron-donating in organic solar cells BHJ type.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3728 ◽  
Author(s):  
Farid A. Badria ◽  
Saied M. Soliman ◽  
Saleh Atef ◽  
Mohammad Shahidul Islam ◽  
Abdullah Mohammed Al-Majid ◽  
...  

The crystal structures of five new chalcones derived from N-ethyl-3-acetylindole with different substituents were investigated: (E)-3-(4-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3a); (E)-3-(3-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3b); (E)-1-(1-ethyl-1H-indol-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (3c); (E)-1-(1-ethyl-1H-indol-3-yl)-3-mesitylprop-2-en-1-one (3d); and (E)-1-(1-ethyl-1H-indol-3-yl)-3-(furan-2-yl)prop-2-en-1-one (3e). The molecular packing of the studied compounds is controlled mainly by C–H⋅⋅⋅O hydrogen bonds, C–H⋅⋅⋅π interactions, and π···π stacking interactions, which were quantitatively analyzed using Hirshfeld topology analysis. Using density functional theory (DFT) calculations, the order of polarity (3b ˂ 3d ˂ 3e ˂ 3a ˂ 3c) was determined. Several chemical reactivity indices such as the ionization potential (I), electron affinity (A), chemical potential (μ), hardness (η), electrophilicity (ω) and nucleophilicity (N) indices were calculated, and these properties are discussed and compared. In addition, the antiproliferative activity of the five new chalcones was studied.


Sign in / Sign up

Export Citation Format

Share Document