scholarly journals Contractile Ring Formation in Xenopus Egg and Fission Yeast

2001 ◽  
Vol 26 (6) ◽  
pp. 545-554 ◽  
Author(s):  
Tatsuhiko Noguchi ◽  
Ritsuko Arai ◽  
Fumio Motegi ◽  
Kentaro Nakano ◽  
Issei Mabuchi
2016 ◽  
Vol 27 (11) ◽  
pp. 1821-1833 ◽  
Author(s):  
Yujie Li ◽  
Jenna R. Christensen ◽  
Kaitlin E. Homa ◽  
Glen M. Hocky ◽  
Alice Fok ◽  
...  

The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction.


2013 ◽  
Vol 203 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Valerie C. Coffman ◽  
Jennifer A. Sees ◽  
David R. Kovar ◽  
Jian-Qiu Wu

Both de novo–assembled actin filaments at the division site and existing filaments recruited by directional cortical transport contribute to contractile ring formation during cytokinesis. However, it is unknown which source is more important. Here, we show that fission yeast formin For3 is responsible for node condensation into clumps in the absence of formin Cdc12. For3 localization at the division site depended on the F-BAR protein Cdc15, and for3 deletion was synthetic lethal with mutations that cause defects in contractile ring formation. For3 became essential in cells expressing N-terminal truncations of Cdc12, which were more active in actin assembly but depended on actin filaments for localization to the division site. In tetrad fluorescence microscopy, double mutants of for3 deletion and cdc12 truncations were severely defective in contractile ring assembly and constriction, although cortical transport of actin filaments was normal. Together, these data indicate that different formins cooperate in cytokinesis and that de novo actin assembly at the division site is predominant for contractile ring formation.


2021 ◽  
Vol 134 (16) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Alaina Willet is first author on ‘ Phosphorylation in the intrinsically disordered region of F-BAR protein Imp2 regulates its contractile ring recruitment’, published in JCS. Alaina is a Research Instructor in the lab of Kathy Gould at Vanderbilt University, Nashville, TN, USA, investigating the mechanisms regulating contractile ring formation in fission yeast.


PLoS Genetics ◽  
2016 ◽  
Vol 12 (10) ◽  
pp. e1006383 ◽  
Author(s):  
Kriti Sethi ◽  
Saravanan Palani ◽  
Juan C. G. Cortés ◽  
Mamiko Sato ◽  
Mayalagu Sevugan ◽  
...  

2008 ◽  
Vol 183 (6) ◽  
pp. 979-988 ◽  
Author(s):  
Yinyi Huang ◽  
Hongyan Yan ◽  
Mohan K. Balasubramanian

Cytokinesis in many eukaryotes depends on the function of an actomyosin contractile ring. The mechanisms regulating assembly and positioning of this ring are not fully understood. The fission yeast Schizosaccharomyces pombe divides using an actomyosin ring and is an attractive organism for the study of cytokinesis. Recent studies in S. pombe (Wu, J.Q., V. Sirotkin, D.R. Kovar, M. Lord, C.C. Beltzner, J.R. Kuhn, and T.D. Pollard. 2006. J. Cell Biol. 174:391–402; Vavylonis, D., J.Q. Wu, S. Hao, B. O'Shaughnessy, and T.D. Pollard. 2008. Science. 319:97–100) have suggested that the assembly of the actomyosin ring is initiated from a series of cortical nodes containing several components of this ring. These studies have proposed that actomyosin interactions bring together the cortical nodes to form a compacted ring structure. In this study, we test this model in cells that are unable to assemble cortical nodes. Although the cortical nodes play a role in the timing of ring assembly, we find that they are dispensable for the assembly of orthogonal actomyosin rings. Thus, a mechanism that is independent of cortical nodes is sufficient for the assembly of normal actomyosin rings.


Cell Reports ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. 772-783.e4 ◽  
Author(s):  
Rebeca Martín-García ◽  
Victor Arribas ◽  
Pedro M. Coll ◽  
Mario Pinar ◽  
Raul A. Viana ◽  
...  

2013 ◽  
Vol 203 (1) ◽  
pp. 3-3
Author(s):  
Ben Short

Study reveals how two formin proteins cooperate to assemble the contractile ring in fission yeast.


2014 ◽  
Vol 205 (3) ◽  
pp. 357-375 ◽  
Author(s):  
Ning Wang ◽  
Libera Lo Presti ◽  
Yi-Hua Zhu ◽  
Minhee Kang ◽  
Zhengrong Wu ◽  
...  

The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51’s localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8+ cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.


Sign in / Sign up

Export Citation Format

Share Document