scholarly journals Antioxidant and Anti-inflammatory Activities of N-((3,4-Dihydro-2H-benzo[h]chromene-2-yl)methyl)-4-methoxyaniline in LPS-Induced BV2 Microglial Cells

2015 ◽  
Vol 38 (12) ◽  
pp. 1831-1835 ◽  
Author(s):  
Md. Moniruzzaman ◽  
Gyeongjun Lee ◽  
Shambhunath Bose ◽  
Minho Choi ◽  
Jae-Kyung Jung ◽  
...  
2019 ◽  
Vol 16 (3) ◽  
pp. 251-260 ◽  
Author(s):  
Elaine Wan Ling Chan ◽  
Emilia Tze Ying Yeo ◽  
Kelly Wang Ling Wong ◽  
Mun Ling See ◽  
Ka Yan Wong ◽  
...  

<P>Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder that eventually leads to severe cognitive impairment. Although the exact etiologies of AD still remain elusive, increasing evidence suggests that neuroinflammation cascades mediated by microglial cells are associated with AD. Piper sarmentosum Roxb. (PS) is a medicinal plant reported to possess various biological properties, including anti-inflammatory, anti-psychotic and anti-oxidant activity. However, little is known about the anti-inflammatory activity of PS roots despite their traditional use to treat inflammatory- mediated ailments. Objective: This study aimed to evaluate the anti-inflammatory and neuroprotective properties of extracts obtained from the roots of PS against beta-amyloid (Aβ)-induced microglial toxicity associated with the production of pro-inflammatory mediators. Method: BV2 microglial cells were treated with hexane (RHXN), dichloromethane (RDCM), ethyl acetate (REA) and methanol (RMEOH) extracts of the roots of PS prior to activation by Aβ. The production and mRNA expression of pro-inflammatory mediators were evaluated by Griess reagent, ELISA kits and RT-qPCR respectively. The phosphorylation status of p38α MAPK was determined via western blot assay. BV2 conditioned medium was used to treat SH-SY5Y neuroblastoma cells and the neuroprotective effect was assessed using MTT assay. Results: PS root extracts, in particular RMEOH significantly attenuated the production and mRNA expression of IL-1β, IL-6 and TNF-α in Aβ-induced BV2 microglial cells. In addition, RHXN, REA and RMEOH extracts significantly reduced nitric oxide (NO) level and the inhibition of NO production was correlated with the total phenolic content of the extracts. Further mechanistic studies suggested that PS root extracts attenuated the production of cytokines by regulating the phosphorylation of p38α MAPK in microglia. Importantly, PS root extracts have protective effects against Aβ-induced indirect neurotoxicity either by inhibiting the production of NO, IL-1β, IL-6, and TNF-α in BV2 cells or by protecting SHSY5Y cells against these inflammatory mediators. Conclusions: These findings provided evidence that PS root extracts confer neuroprotection against Aβ- induced microglial toxicity associated with the production of pro-inflammatory mediators and may be a potential therapeutic agent for inflammation-related neurological conditions including Alzheimer’s disease (AD).</P>


2013 ◽  
Vol 31 (6) ◽  
pp. 1357-1366 ◽  
Author(s):  
KYUNG-JUN JANG ◽  
HONG KI KIM ◽  
MIN HO HAN ◽  
YOU NA OH ◽  
HYUN-MIN YOON ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4796
Author(s):  
Jiali Chen ◽  
Cailin Tang ◽  
Yang Zhou ◽  
Rongfei Zhang ◽  
Shaoxia Ye ◽  
...  

Cinnamomum camphora (Linn.) Presl has been widely used in traditional Chinese medicine for a variety of purposes. Our previous study indicated the antibacterial mechanism of the essential oil (EO) from C. camphora leaves; however, its anti-inflammatory activity and the underlying mechanism have not been clearly demonstrated. Thus, the present study investigated its anti-inflammatory property. Our data revealed that EO significantly decreased the release of nitric oxide (NO) and the mRNA expression of inducible NO synthase (iNOS) in lipopolysaccharide (LPS)-induced BV2 microglial cells. EO also attenuated LPS-induced increase in the mRNA expression and secretion of inflammatory cytokines including interleukin-6 (IL-6), IL-18, IL-1β and tumor necrosis factor-α (TNF-α). Furthermore, the metabolic profiles of LPS-induced BV2 microglial cells treated with or without EO were explored. Thirty-nine metabolites were identified with significantly different contents, including 21 upregulated and 18 downregulated ones. Five pathways were enriched by shared differential metabolites. Compared with the control cells, the glucose level was decreased, while the lactate level was increased, in the culture supernatant from LPS-stimulated cells, which were reversed by EO treatment. Moreover, compared to the LPS-treated group, the activities of phosphofructokinase (PFK) and pyruvate kinase (PK) in EO group were decreased. In summary, the current study demonstrated that EO from C. camphora leaves acts as an anti-inflammatory agent, which might be mediated through attenuating the glycolysis capacity of microglial cells.


2011 ◽  
Vol 137 (3) ◽  
pp. 1402-1408 ◽  
Author(s):  
Myung-Hee Cheong ◽  
Sang-Ryong Lee ◽  
Hwa-Seung Yoo ◽  
Jin-Woo Jeong ◽  
Gi-Young Kim ◽  
...  

2021 ◽  
Vol 17 (74) ◽  
pp. 288
Author(s):  
Nootchanat Mairuae ◽  
Poonlarp Cheepsunthorn ◽  
Benjaporn Buranrat ◽  
Supataechasit Yannasithinon

Sign in / Sign up

Export Citation Format

Share Document