bv2 microglial cells
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 66)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Haiyun Chen ◽  
Xiao Chang ◽  
Jiemei Zhou ◽  
Guiliang Zhang ◽  
Jiehong Cheng ◽  
...  

Abstract BackgroundMicroglial activation mediated neuroinflammation was considered as a vital trigger factor in the pathogenesis of Alzheimer’s disease (AD). T-006, a new tetramethylpyrazine derivative, has been recently found to alleviate cognitive deficits via inhibition of Tau expression and phosphorylation in AD transgenic mouse models. Here, we hypothesized that T-006 may ameliorate AD-like pathology by suppressing the neuroinflammation. MethodsAPP/PS1 transgenic AD mouse model was used here to evaluate the anti-inflammatory effect of T-006 and its underlying mechanisms, as well as its potential protective effects against lipopolysaccharide (LPS)-activated microglial-induced neurotoxicity.ResultsOur results indicated that T-006 significantly decreased the levels of total amyloid β peptide (Aβ) and glial fibrillary acidic protein (GFAP) as well as the ionized calcium binding adaptor molecule-1 (Ibα-1) expression in the APP/PS1 mice. Moreover, T-006 dramatically suppressed abnormal elevation of inflammatory mediators and reduced the levels of Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88) and NF-κB signaling related proteins in lipopolysaccharide (LPS)-induced BV2 microglial cells. We also found that TAK242, a TLR4 inhibitor could abolish the down-regulation of T-006 on LPS-induced proinflammatory mediators and reversed the downstream proteins expression containing MyD88 and NF-κB signaling. Importantly, T-006 prevented against neuroinflammation induced neurotoxicity by mitigating reactive oxygen species (ROS) overproduction and mitochondrial membrane potential (MMP) dissipation. Conclusions T-006 exerts neuroprotective effect in treating AD by suppressing the neuroinflammation through modulation of TLR4-mediated MyD88/NF-κB signaling pathways.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1722
Author(s):  
Elena Grao-Cruces ◽  
Maria C. Millan-Linares ◽  
Maria E. Martin-Rubio ◽  
Rocio Toscano ◽  
Sergio Barrientos-Trigo ◽  
...  

High-density lipoproteins (HDLs) play an important role in reverse cholesterol transport and present antioxidant properties, among others. In the central nervous system (CNS), there are HDLs, where these lipoproteins could influence brain health. Owing to the new evidence of HDL functionality remodeling in obese patients, and the fact that obesity-associated metabolic disturbances is pro-inflammatory and pro-oxidant, the aim of this study was to investigate if HDL functions are depleted in obese patients and obesity-associated microenvironment. HDLs were isolated from normal-weight healthy (nwHDL) and obese men (obHDL). The oxHDL level was measured by malondialdehyde and 4-hydroxynoneal peroxided products. BV2 microglial cells were exposed to different concentrations of nwHDL and obHDL in different obesity-associated pro-inflammatory microenvironments. Our results showed that hyperleptinemia increased oxHDL levels. In addition, nwHDLs reduced pro-inflammatory cytokines’ release and M1 marker gene expression in BV2 microglial cells. Nevertheless, both nwHDL co-administered with LPS+leptin and obHDL promoted BV2 microglial activation and a higher pro-inflammatory cytokine production, thus confirming that obesity-associated metabolic disturbances reverse the antioxidant and anti-inflammatory properties of HDLs in microglial cells.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jieun Kim ◽  
Jin-Hee Park ◽  
Keshvi Shah ◽  
Scott John Mitchell ◽  
Kwangwook Cho ◽  
...  

The sulfonylurea drug gliquidone is FDA approved for the treatment of type 2 diabetes. Binding of gliquidone to ATP-sensitive potassium channels (SUR1, Kir6 subunit) in pancreatic β-cells increases insulin release to regulate blood glucose levels. Diabetes has been associated with increased levels of neuroinflammation, and therefore the potential effects of gliquidone on micro- and astroglial neuroinflammatory responses in the brain are of interest. Here, we found that gliquidone suppressed LPS-mediated microgliosis, microglial hypertrophy, and proinflammatory cytokine COX-2 and IL-6 levels in wild-type mice, with smaller effects on astrogliosis. Importantly, gliquidone downregulated the LPS-induced microglial NLRP3 inflammasome and peripheral inflammation in wild-type mice. An investigation of the molecular mechanism of the effects of gliquidone on LPS-stimulated proinflammatory responses showed that in BV2 microglial cells, gliquidone significantly decreased LPS-induced proinflammatory cytokine levels and inhibited ERK/STAT3/NF-κB phosphorylation by altering NLRP3 inflammasome activation. In primary astrocytes, gliquidone selectively affected LPS-mediated proinflammatory cytokine expression and decreased STAT3/NF-κB signaling in an NLRP3-independent manner. These results indicate that gliquidone differentially modulates LPS-induced microglial and astroglial neuroinflammation in BV2 microglial cells, primary astrocytes, and a model of neuroinflammatory disease.


2021 ◽  
pp. 096032712110529
Author(s):  
Qunxian Li ◽  
Jing Wu ◽  
Lixian Huang ◽  
Bo Zhao ◽  
Qingbin Li

Ischemic stroke is a leading cause of death and long-term disability worldwide. The aim of this study is to explore the potential function of ephedrine in ischemic stroke and the underlying molecular mechanism. A middle cerebral artery occlusion (MCAO) rat model was established. The potential effects of ephedrine on MCAO rats and LPS-stimulated BV2 microglial cells were evaluated. Ephedrine reduced the infarct volume, cell apoptosis, brain water content, neurological score, and proinflammatory cytokines (TNF-α and IL-1β) production in MCAO rats. Ephedrine treatment also suppressed TNF-α and IL-1β production and NOD-like receptor pyrin domain 3 (NLRP3) inflammasome activation in BV2 microglial cells. The expression of NLRP3, caspase-1, and IL-1β was suppressed by ephedrine. Moreover, ephedrine treatment increased the phosphorylation of Akt and GSK3β and nuclear NRF2 levels in LPS-treated BV2 microglial cells. Meanwhile, LY294002 attenuated the inhibitory effects of ephedrine on NLRP3 inflammasome activation and TNF-α and IL-1β production. In addition, the level of pAkt was increased, while NLRP3, caspase-1, and IL-1β were decreased by ephedrine treatment in MCAO rats. In conclusion, ephedrine ameliorated cerebral ischemia injury via inhibiting NLRP3 inflammasome activation through the Akt/GSK3β/NRF2 pathway. Our results revealed a potential role of ephedrine in ischemic stroke treatment.


2021 ◽  
Vol 22 (20) ◽  
pp. 10947
Author(s):  
Jocelyn Karunia ◽  
Aram Niaz ◽  
Mawj Mandwie ◽  
Sarah Thomas Broome ◽  
Kevin A. Keay ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related immunosuppressive peptides. However, the underlying mechanisms through which these peptides regulate microglial activity are not fully understood. Using lipopolysaccharide (LPS) to induce an inflammatory challenge, we tested whether PACAP or VIP differentially affected microglial activation, morphology and cell migration. We found that both peptides attenuated LPS-induced expression of the microglial activation markers Iba1 and iNOS (### p < 0.001), as well as the pro-inflammatory mediators IL-1β, IL-6, Itgam and CD68 (### p < 0.001). In contrast, treatment with PACAP or VIP exerted distinct effects on microglial morphology and migration. PACAP reversed LPS-induced soma enlargement and increased the percentage of small-sized, rounded cells (54.09% vs. 12.05% in LPS-treated cells), whereas VIP promoted a phenotypic shift towards cell subpopulations with mid-sized, spindle-shaped somata (48.41% vs. 31.36% in LPS-treated cells). Additionally, PACAP was more efficient than VIP in restoring LPS-induced impairment of cell migration and the expression of urokinase plasminogen activator (uPA) in BV2 cells compared with VIP. These results suggest that whilst both PACAP and VIP exert similar immunosuppressive effects in activated BV2 microglia, each peptide triggers distinctive shifts towards phenotypes of differing morphologies and with differing migration capacities.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2110320
Author(s):  
Ninh T. Son ◽  
Tuan A. Le ◽  
Dinh T. T. Thuy ◽  
Dinh L. Nguyen ◽  
Tran T. Tuyen ◽  
...  

Plants of the genus Polyalthia can be seen as a rich resource of essential oils type terpenoids. In this study, the essential oils obtained by hydro-distillation from the leaf and stem of Polyalthia viridis were analysed by gas chromatography/mass spectrometry–flame ionization detection. Thirty-nine constituents (95.3%) were identified in the leaf oils and 42 constituents (90.9%) in the stem oils. Sesquiterpene hydrocarbons and oxygenated sesquiterpenes were the main constituents of both oils, in which 2 sesquiterpene hydrocarbons, germacrene D (45.1%-47.4%) and bicyclogermacrene (8.2%-17.1%), were the 2 major compounds. The stem oils inhibited the growth of 3 cancer cell lines, HepG2, MCF7, and A549, with half inhibitory concentration (IC50) values of 56.7 to 68.4 μg/mL. The stem oils also successfully suppressed the growth of the filamentous fungus Aspergillus niger and the yeast Candida albicans with minimum inhibitory concentration values of 50 μg/mL. P viridis oils suppressed NO production in lipopolysaccharide-stimulated BV2 microglial cells, with IC50 values of 57.6 to 76.7 μg/mL.


Author(s):  
Jocelyn Karunia ◽  
Aram Niaz ◽  
Mawj Mandwie ◽  
Sarah Thomas Broome ◽  
Kevin A Keay ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally-related immunosuppressive peptides. However, the underlying mechanisms through which these peptides regulate microglial activity are not fully understood. Using lipopolysaccharide (LPS) to induce an inflammatory challenge, we tested whether PACAP or VIP differentially affected microglial activation, morphology and cell migration. We found that both peptides attenuated LPS-induced expression of the microglial activation markers Iba1 and iNOS (###p&lt;0.001), as well as the pro-inflammatory mediators IL-1&beta;, IL-6, Itgam and CD68 (###p&lt;0.001). In contrast, treatment with PACAP or VIP exerted distinct effects on microglial morphology and migration. PACAP reversed LPS-induced soma enlargement and increased the percentage of small-sized, rounded cells (54.09% vs 12.05% in LPS-treated cells), whereas VIP promoted a phenotypic shift towards cell subpopulations with mid-sized, spindle-shaped soma (48.41% vs 31.36% in LPS-treated). Additionally, PACAP was more efficient than VIP in restoring LPS-induced impairment of cell migration and the expression of urokinase plasminogen activator (uPA) in BV2 cells compared with VIP. These results suggest that whilst both PACAP and VIP exert similar immunosuppressive effects in activated BV2 microglia, each peptide triggers distinctive shifts towards phenotypes of differing morphologies and with differing migration capacities.


2021 ◽  
Vol 22 (16) ◽  
pp. 9061
Author(s):  
Phuong Linh Nguyen ◽  
Bich Phuong Bui ◽  
Men Thi Hoai Duong ◽  
Kyeong Lee ◽  
Hee-Chul Ahn ◽  
...  

The c-Jun N-terminal kinases (JNKs) are implicated in many neuropathological conditions, including neurodegenerative diseases. To explore potential JNK3 inhibitors from the U.S. Food and Drug Administration-approved drug library, we performed structure-based virtual screening and identified azelastine (Aze) as one of the candidates. NMR spectroscopy indicated its direct binding to the ATP-binding site of JNK3, validating our observations. Although the antihistamine effect of Aze is well documented, the involvement of the JNK pathway in its action remains to be elucidated. This study investigated the effects of Aze on lipopolysaccharide (LPS)-induced JNK phosphorylation, pro-inflammatory mediators, and cell migration in BV2 microglial cells. Aze was found to inhibit the LPS-induced phosphorylation of JNK and c-Jun. It also inhibited the LPS-induced production of pro-inflammatory mediators, including interleukin-6, tumor necrosis factor-α, and nitric oxide. Wound healing and transwell migration assays indicated that Aze attenuated LPS-induced BV2 cell migration. Furthermore, Aze inhibited LPS-induced IκB phosphorylation, thereby suppressing nuclear translocation of NF-κB. Collectively, our data demonstrate that Aze exerts anti-inflammatory and anti-migratory effects through inhibition of the JNK/NF-κB pathway in BV2 cells. Based on our findings, Aze may be a potential candidate for drug repurposing to mitigate neuroinflammation in various neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases.


Sign in / Sign up

Export Citation Format

Share Document