SATELLITE CELL AND GROWTH FACTOR INVOLVEMENT IN SKELETAL MUSCLE GROWTH.

1980 ◽  
Vol 21 (Supplement) ◽  
pp. S30
Author(s):  
Timothy P. White
Development ◽  
2018 ◽  
Vol 145 (20) ◽  
pp. dev167197 ◽  
Author(s):  
John F. Bachman ◽  
Alanna Klose ◽  
Wenxuan Liu ◽  
Nicole D. Paris ◽  
Roméo S. Blanc ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Rosa Maria Correra ◽  
David Ollitrault ◽  
Mariana Valente ◽  
Alessia Mazzola ◽  
Bjorn T. Adalsteinsson ◽  
...  

1990 ◽  
Vol 259 (1) ◽  
pp. E89-E95 ◽  
Author(s):  
D. L. DeVol ◽  
P. Rotwein ◽  
J. L. Sadow ◽  
J. Novakofski ◽  
P. J. Bechtel

We have investigated the hypothesis that there is local regulation of insulin-like growth factor (IGF) gene expression during skeletal muscle growth. Compensatory hypertrophy was induced in the soleus, a predominantly slow-twitch muscle, and plantaris, a fast-twitch muscle, in 11- to 12-wk-old female Wistar rats by unilateral cutting of the distal gastrocnemius tendon. Animals were killed 2, 4, or 8 days later, and muscles of the nonoperated leg served as controls. Muscle weight increased throughout the experimental period, reaching 127% (soleus) or 122% (plantaris) of control values by day 8. In both growing muscles, IGF-I mRNA, quantitated by a solution-hybridization nuclease-protection assay, rose by nearly threefold on day 2 and remained elevated throughout the experimental period. IGF-II mRNA levels also increased over controls. A more dramatic response was seen in hypophysectomized rats, where IGF-I mRNA levels rose by 8- to 13-fold, IGF-II values by 3- to 7-fold, and muscle mass increased on day 8 to 149% (soleus) or 133% (plantaris) of the control contralateral limb. These results indicate that signals propagated during muscle hypertrophy enhance the expression of both IGF genes, that modulation of IGF-I mRNA levels can occur in the absence of growth hormone, and that locally produced IGF-I and IGF-II may play a role in skeletal muscle growth.


Sign in / Sign up

Export Citation Format

Share Document