Effects of Chronic Strength Training in Novice Weightlifters on the Baroreflex Response to Acute Isometric Exercise

2006 ◽  
Vol 38 (Supplement) ◽  
pp. S199
Author(s):  
Chao Wang ◽  
Cody M. Stafford ◽  
Warren D. Franke
2020 ◽  
Vol 10 (24) ◽  
pp. 8831
Author(s):  
Carson Patterson ◽  
Christian Raschner

Eccentric muscular work plays a large role in alpine ski racing. Training with supramaximal eccentric loads (SME) is highly effective to improve eccentric strength but potentially dangerous. Most SME training devices do not allow the athlete to move a barbell freely as they would when performing conventional barbell training. The Intelligent Motion Lifter (IML) allows for safe SME training with a free barbell and no spotters. The IML can be used for free barbell training: a spotter for normal training, eccentric only, concentric only, and squat jumps. It is also a training and testing device for isokinetic and isometric exercise. This commentary addresses the necessity of eccentric training for elite alpine ski racers, the development of the IML and its use in training.


2008 ◽  
Vol 105 (2) ◽  
pp. 315-323 ◽  
Author(s):  
A. C. M. Takahashi ◽  
R. C. Melo ◽  
R. J. Quitério ◽  
E. Silva ◽  
A. M. Catai

2017 ◽  
Vol 26 (2) ◽  
pp. 524-539 ◽  
Author(s):  
Victoria S. McKenna ◽  
Bin Zhang ◽  
Morgan B. Haines ◽  
Lisa N. Kelchner

Purpose This systematic review summarizes the effects of isometric lingual strength training on lingual strength and swallow function in adult populations. Furthermore, it evaluates the designs of the reviewed studies and identifies areas of future research in isometric lingual strength training for dysphagia remediation. Method A comprehensive literature search of 3 databases and additional backward citation search identified 10 studies for inclusion in the review. The review reports and discusses the isometric-exercise intervention protocols, pre- and postintervention lingual-pressure data (maximum peak pressures and lingual-palatal pressures during swallowing), and oropharyngeal swallowing measures such as penetration-aspiration scales, oropharyngeal residue and duration, lingual volumes, and quality-of-life assessments. Results Studies reported gains in maximum peak lingual pressures following isometric lingual strength training for both healthy adults and select groups of individuals with dysphagia. However, due to the variability in study designs, it remains unclear whether strength gains generalize to swallow function. Conclusion Although isometric lingual strength training is a promising intervention for oropharyngeal dysphagia, the current literature is too variable to confidently report specific therapeutic benefits. Future investigations should target homogenous patient populations and use randomized controlled trials to determine the efficacy of this treatment for individuals with dysphagia.


2005 ◽  
Vol 39 (2) ◽  
pp. 23
Author(s):  
NORRA MACREADY
Keyword(s):  

2020 ◽  
Vol 90 (1-2) ◽  
pp. 113-123
Author(s):  
Ines Schadock ◽  
Barbara G. Freitas ◽  
Irae L. Moreira ◽  
Joao A. Rincon ◽  
Marcio Nunes Correa ◽  
...  

Abstract. β-hydroxy-β-methyl butyrate (HMB) is a bioactive metabolite derived from the amino acid leucine, usually applied for muscle mass increase during physical training, as well as for muscle mass maintenance in debilitating chronic diseases. The hypothesis of the present study is that HMB is a safe supplement for muscle mass gain by strength training. Based on this, the objective was to measure changes in body composition, glucose homeostasis and hepatic metabolism of HMB supplemented mice during strength training. Two of four groups of male mice (n = 6/group) underwent an 8-week training period session (climbing stairs) with or without HMB supplementation (190 mg/kgBW per day). We observed lower body mass gain (4.9 ± 0.43% versus 1.2 ± 0.43, p < 0.001) and increased liver mass (40.9 ± 0.9 mg/gBW versus 44.8 ± 1.3, p < 0.001) in the supplemented trained group compared with the non-supplemented groups. The supplemented trained group had an increase in relative adipose tissue mass (12.4 ± 0.63 mg/gBW versus 16.1 ± 0.88, P < 0.01) compared to the non-supplemented untrained group, and an increase in fasting blood glucose (111 ± 4.58 mg/dL versus 122 ± 3.70, P < 0.05) and insulin resistance (3.79 ± 0.19 % glucose decay/min versus 2.45 ± 0.28, P < 0.05) comparing with non-supplemented trained group. Adaptive heart hypertrophy was observed only in the non-supplemented trained group (4.82 ± 0.05 mg/gBW versus 5.12 ± 0.13, P < 0.05). There was a higher hepatic insulin-like growth factor-1 expression (P = 0.002) in supplemented untrained comparing with non-supplemented untrained group. Gene expression of gluconeogenesis regulatory factors was increased by training and reduced by HMB supplementation. These results confirm that HMB supplementation associated with intensive training protocol drives changes in glucose homeostasis and liver metabolism in mice.


Sign in / Sign up

Export Citation Format

Share Document